

Hybrid-Wechselrichter

SUN-5K-SG04LP3-EU

SUN-6K-SG04LP3-EU

SUN-8K-SG04LP3-EU

SUN-10K-SG04LP3-EU

SUN-12K-SG04LP3-EU

Benutzerhandbuch

Inhalt

1. Sicherheitseinweisungen		01
2. Produkthinweise		01-04
2.1 Produktübersicht		
2.2 Produktgröße		
2.3 Produktmerkmale		
2.4 Grundlegende Systemarchitektur		
3. Installation		05-24
3.1 Teileliste		00 2.
3.2 Montageanleitung		
3.3 Batterieanschluss		
3.4 Netzanschluss und Ersatzlastansch	nluss	
3.5 PV-Verbindung		
3.6 CT-Verbindung		
3.6.1 Zähleranschluss		
3.7 Erdungsanschluss (obligatorisch)		
3.8 WIFI-Verbindung		
3.9 Verdrahtungssystem für Wechseln	chter	
3.10 Verdrantungsplan	ainas Diasalganaratara	
3 12 Phasen-Parallelschaltnlan	ellies Dieselgenerators	
		25
4. DETRIED	2	
4.1 Elli / Ausschalten		
F ICD Display Symbols		26.20
5. LCD-Display-Symbole		26-38
5.1 Hauptblidschirm		
5.2 Solarstromkurve		
5.4 Manü Systemainstallungan		
5.5 Menii Grundeinstellungen		
5.6 Menü "Batterieeinstellungen		
5.7 Setup-Menü Systemarbeitsmodus		
5.8 Menü "Netzeinstellungen		
5.9 Setun-Menü für die Verwendung des	Generatoranschlusses	
5 10 Setup-Menü für erweiterte Funktio	nen	
5 11 Setup-Menü Geräteinformationen		
6 Modus		38-30
7 Pagranzung dar Haftung		20 12
		33-43
8. Datenblatt		44-45
9. Anhang I		46-47
10. Anhang II		48

Über dieses Handbuch

Das Handbuch beschreibt hauptsächlich die Produktinformationen, Richtlinien für die Installation, den Betrieb und die Wartung. Das Handbuch kann keine vollständigen Informationen über die Photovoltaik (PV)-Anlage enthalten.

Wie Sie dieses Handbuch verwenden

Lesen Sie das Handbuch und andere zugehörige Dokumente, bevor Sie mit dem Wechselrichter arbeiten. Die Dokumente müssen sorgfältig aufbewahrt werden und jederzeit verfügbar sein. Der Inhalt kann aufgrund von Produktentwicklungen regelmäßig aktualisiert oder überarbeitet werden. Die Informationen in diesem Handbuch können ohne vorherige Ankündigung geändert werden. Das neueste Handbuch kann über service@deye.com.cn bezogen werden.

1. Sicherheitsmaßnahmen

- Dieses Kapitel enthält wichtige Sicherheits- und Bedienungshinweise. Lesen Sie dieses Handbuch und bewahren Sie es zum späteren Nachschlagen auf.
- Bevor Sie den Wechselrichter benutzen, lesen Sie bitte die Hinweise und Warnzeichen der Batterie und die entsprechenden Abschnitte in der Bedienungsanleitung.
- Nehmen Sie den Wechselrichter nicht auseinander. Bringen Sie ihn im Falle einer Wartung oder Reparatur zu einem professionellen Servicecenter.
- · Ein unsachgemäßer Zusammenbau kann zu einem elektrischen Schlag oder Brand führen.
- Um das Risiko eines Stromschlags zu verringern, sollten Sie alle Kabel abklemmen, bevor Sie Wartungs- oder Reinigungsarbeiten durchführen. Durch das Ausschalten des Geräts wird dieses Risiko nicht verringert.
- · Vorsicht! Nur qualifiziertes Personal darf dieses Gerät mit Batterie installieren.
- · Laden Sie niemals eine eingefrorene Batterie auf.
- Für den optimalen Betrieb dieses Wechselrichters beachten Sie bitte die erforderlichen Angaben zur Auswahl der geeigneten Kabelgröße. Es ist sehr wichtig, diesen Wechselrichter korrekt zu bedienen.
- Seien Sie sehr vorsichtig, wenn Sie mit Metallwerkzeugen an oder in der Nähe von Batterien arbeiten. Das Fallenlassen eines Werkzeugs kann einen Funken oder einen Kurzschluss in den Batterien oder anderen elektrischen Teilen verursachen und sogar zu einer Explosion führen.
- Bitte halten Sie sich strikt an das Installationsverfahren, wenn Sie die AC- oder DC-Anschlüsse trennen wollen. Einzelheiten dazu finden Sie im Abschnitt "Installation" in diesem Handbuch.
- Erdungsanweisungen Dieser Wechselrichter sollte an ein dauerhaft geerdetes Kabelsystem angeschlossen werden. Achten Sie bei der Installation des Wechselrichters auf die Einhaltung der örtlichen Anforderungen und Vorschriften.
- Schließen Sie niemals den AC-Ausgang und den DC-Eingang kurz. Schließen Sie das Gerät nicht an das Stromnetz an, wenn der DC-Eingang kurzgeschlossen ist.

2. Produkteinführung

Dieser multifunktionale Wechselrichter kombiniert die Funktionen eines Wechselrichters, eines Solarladegeräts und eines Batterieladegeräts, um eine unterbrechungsfreie Stromversorgung bei tragbarer Größe zu ermöglichen. Sein umfassendes LCD-Display ermöglicht eine benutzerkonfigurierbare und leicht zugängliche Tastenbedienung, wie z. B. Batterieladung, AC/Solar-Ladung und akzeptable Eingangsspannung für verschiedene Anwendungen.

2.1 Produktübersicht

* bei einigen Hardware-Versionen ist der Schutzschalter von Grid nicht vorhanden

2.2 Produktgröße

2.3 Produktmerkmale

- 230V/400V Dreiphasen-Wechselrichter mit reiner Sinuswelle.
- Selbstverbrauch und Einspeisung ins Netz.
- Automatischer Neustart während der AC-Wiederherstellung.
- Programmierbare Versorgungspriorität für Batterie oder Netz.
- Mehrere Betriebsmodi programmierbar: Am Netz, außerhalb des Netzes und USV.
- Konfigurierbarer Batterieladestrom/Spannung je nach Anwendung über LCD-Einstellung.
- Konfigurierbare AC/Solar/Generator-Ladegerät-Priorität durch LCD-Einstellung.
- Kompatibel mit Netzspannung oder Generatorstrom.
- Schutz vor Überlast/Übertemperatur/Kurzschluss.
- Intelligentes Batterieladegerätdesign für optimierte Batterieleistung
- Mit Begrenzungsfunktion, die verhindert, dass zu viel Strom in das Netz eingespeist wird.
- Unterstützung von WIFI-Überwachung und Einbau von 2 Strings für 1 MPP-Tracker, 1 String für 1 MPP-Tracker.
- Intelligent einstellbare dreistufige MPPT-Ladung für optimierte Batterieleistung.
- Funktion für die Nutzungszeit.
- Smart Load Funktion.

2.4 Grundlegende Systemarchitektur

Die folgende Abbildung zeigt die grundlegende Anwendung dieses Wechselrichters.

Er umfasst auch die folgenden Geräte, um ein vollständig funktionierendes System zu haben.

- Generator oder Stromversorger
- PV-Module

Wenden Sie sich an Ihren Systemintegrator, um weitere mögliche Systemarchitekturen je nach Ihren Anforderungen zu erhalten.

Dieser Wechselrichter kann alle Arten von Geräten zu Hause oder im Büro mit Strom versorgen, einschließlich motorbetriebener Geräte wie Kühlschränke und Klimageräte.

3. Installation

3.1 Teileliste

Überprüfen Sie das Gerät vor der Installation. Vergewissern Sie sich, dass nichts in der Verpackung beschädigt ist. Sie sollten die Artikel in der folgenden Verpackung erhalten haben:

3.2 Montageanleitung

Vorsichtsmaßnahmen bei der Installation

Dieser Hybrid-Wechselrichter ist für den Außeneinsatz konzipiert (IP65). Bitte stellen Sie sicher, dass der Installationsort die folgenden Bedingungen erfüllt:

- · Nicht in direktem Sonnenlicht
- Nicht in Bereichen, in denen leicht entflammbare Stoffe gelagert werden.
- · Nicht in explosionsgefährdeten Bereichen.
- · Nicht direkt in der kühlen Luft.
- · Nicht in der Nähe der Fernsehantenne oder des Antennenkabels.
- · Nicht höher als etwa 2000 Meter über dem Meeresspiegel.
- Nicht in einer Umgebung mit Niederschlag oder Feuchtigkeit (>95%)

Vermeiden Sie während der Installation und des Betriebs direkte Sonneneinstrahlung, Regen und Schnee. Bevor Sie alle Kabel anschließen, nehmen Sie bitte die Metallabdeckung ab, indem Sie die Schrauben wie unten gezeigt entfernen:

Beachten Sie die folgenden Punkte, bevor Sie den Installationsort wählen:

- Bitte wählen Sie für die Installation eine vertikale Wand mit ausreichender Tragfähigkeit, die für die Installation auf Beton oder anderen nicht brennbaren Oberflächen geeignet ist, die Installation ist unten dargestellt.
- · Installieren Sie diesen Wechselrichter in Augenhöhe, damit das LCD-Display jederzeit abgelesen werden kann.
- \cdot Die Umgebungstemperatur sollte zwischen -25~60°C liegen, um einen optimalen Betrieb zu gewährleisten.
- Achten Sie darauf, dass andere Objekte und Oberflächen wie in der Abbildung dargestellt sind, um eine ausreichende Wärmeableitung zu gewährleisten und genügend Platz zum Entfernen von Kabeln zu haben.

Für eine gute Luftzirkulation zur Wärmeableitung sollten Sie einen Freiraum von ca. 50 cm zur Seite und ca. 50 cm über und unter dem Gerät einhalten. Und 100 cm nach vorne.

Montage des Wechselrichters

Denken Sie daran, dass dieser Wechselrichter schwer ist! Bitte seien Sie vorsichtig, wenn Sie ihn aus der Verpackung nehmen. Wählen Sie den empfohlenen Bohrkopf (wie im Bild unten gezeigt), um 4 Löcher in die Wand zu bohren,

82-90mm tief.

1. Verwenden Sie einen geeigneten Hammer, um die Spreizschraube in die Löcher einzuschlagen.

2. Tragen Sie den Wechselrichter und halten Sie ihn fest. Achten Sie darauf, dass die Aufhängung auf die Dehnschraube zielt und befestigen Sie den Wechselrichter an der Wand.

3. Ziehen Sie den Schraubenkopf des Spreizbolzens fest, um die Montage zu beenden.

Montage der Wechselrichter-Aufhängeplatte

3.3 Batterieanschluss

Für einen sicheren Betrieb und die Einhaltung der Vorschriften ist ein separater DC-Überstromschutz oder eine Trennvorrichtung zwischen der Batterie und dem Wechselrichter erforderlich. Bei einigen Anwendungen sind Schaltgeräte möglicherweise nicht erforderlich, aber Überstromschutzvorrichtungen sind dennoch erforderlich. Die erforderliche Größe der Sicherung oder des Schutzschalters entnehmen Sie bitte den typischen Stromstärken in der nachstehenden Tabelle.

Modell	Kabelgröße	Kabel(mm²)	Drehmomentwert (max)
5Kw	2AWG	35	24.5Nm
6/8Kw	1AWG	50	24.5Nm
10/12Kw	1/0AWG	50	24.5Nm

Tabelle 3-2 Kabelgröße

Die gesamte Verkabelung muss von einem Fachmann durchgeführt werden.

Der Anschluss der Batterie mit einem geeigneten Kabel ist wichtig für den sicheren und effizienten Betrieb des Systems. Um die Verletzungsgefahr zu verringern, finden Sie in Tabelle 3-2 die empfohlenen Kabel.

Bitte befolgen Sie die folgenden Schritte, um die Batterieverbindung herzustellen:

- 1. Bitte wählen Sie ein geeignetes Batteriekabel mit dem richtigen Stecker, der gut in die Batteriepole passt.
- 2. Verwenden Sie einen geeigneten Schraubendreher, um die Schrauben zu lösen und die Batterieanschlüsse zu befestigen. Ziehen Sie dann die Schrauben mit dem Schraubendreher an und stellen Sie sicher, dass die Schrauben mit einem Drehmoment von 24,5 Nm im Uhrzeigersinn angezogen werden.
- 3. Vergewissern Sie sich, dass die Polarität an der Batterie und am Wechselrichter richtig angeschlossen ist.

Für 5-12KW Modell, Batterieanschluss Schraubengröße: M10

DC-Batterieeingang 2/1AWG Drahtgröße

4. Falls Kinder den Wechselrichter berühren oder Insekten in den Wechselrichter eindringen, vergewissern Sie sich bitte, dass der Stecker des Wechselrichters durch Drehen im Uhrzeigersinn wasserdicht verschlossen ist.

Der Einbau muss mit Sorgfalt erfolgen.

Bevor Sie die endgültige DC-Verbindung herstellen oder den DC-Unterbrecher/Trennschalter schließen, stellen Sie sicher, dass Plus (+) an Plus (+) und Minus (-) an Minus (-) angeschlossen ist. Ein verpolter Anschluss der Batterie führt zu einer Beschädigung des Wechselrichters.

3.3.2 Definition des Funktionsanschlusses

3.3.3 Anschluss des Temperatursensors für Blei-Säure-Batterie

3.4 Netzanschluss und Ersatzlastanschluss

Vor dem Anschluss an das Stromnetz installieren Sie bitte einen separaten AC-Schutzschalter zwischen Wechselrichter und Netz. Dies stellt sicher, dass der Wechselrichter während der Wartung sicher getrennt werden kann und vollständig vor Überstrom geschützt ist. 20A für 8kW, 32A für 10kW und 32A für 12kW sind die empfohlenen Werte für den AC-Schalter für den Lastanschluss.

32A für 12KW. Der empfohlene AC-Unterbrecher für den Netzanschluss ist 63A für 8kW, 63A für 10kW und 63A für 12KW.

Es gibt drei Klemmenblöcke mit den Markierungen "Grid" "Load" und "GEN". Bitte nicht verwechseln Eingangs- und Ausgangsanschlüsse.

Es ist sehr wichtig für die Sicherheit des Systems und den effizienten Betrieb, ein geeignetes Kabel für den AC-Eingangsanschluss zu verwenden. Um die Verletzungsgefahr zu verringern, verwenden Sie bitte die unten aufgeführten empfohlenen Kabel.

Modell	Kabelgröße	Kabel(mm²)	Drehmoment(max)			
5/6/8/10/12KW	10AWG	4	1.2Nm			
Netzanschluss						

Modell	Kabelgröße	Kabel(mm²)	Drehmoment (max)
5/6/8/10/12KW	10AWG	6	1.2Nm

Tabelle 3-3 Empfohlene Größe für AC-Leitungen

Bitte führen Sie die folgenden Schritte aus, um die Grid-, Load- und Gen-Port-Verbindung zu implementieren:

- 1. Bevor Sie den Netz-, Last- und Generatoranschluss herstellen, schalten Sie zuerst den AC-Unterbrecher oder Trennschalter aus.
- 2. Entfernen Sie die 10 mm lange Isolierhülse, schrauben Sie die Schrauben ab, führen Sie die Drähte entsprechend der auf der Klemmenleiste angegebenen Polarität ein und ziehen Sie die Klemmenschrauben fest. Stellen Sie sicher, dass der Anschluss vollständig ist.

Vergewissern Sie sich, dass die Stromquelle vom Netz getrennt ist, bevor Sie versuchen, sie mit dem Gerät zu verbinden.

- 3. Führen Sie dann die AC-Ausgangsdrähte entsprechend der auf der Klemmleiste angegebenen Polarität ein und ziehen Sie die Klemme fest. Achten Sie darauf, dass die entsprechenden Nund PE-Drähte ebenfalls an die entsprechenden Klemmen angeschlossen werden.
- 4. Stellen Sie sicher, dass die Drähte sicher angeschlossen sind.
- 5. Geräte wie z.B. Klimaanlagen benötigen mindestens 2-3 Minuten, um neu zu starten, da genügend Zeit benötigt wird, um das Kältemittelgas im Kreislauf auszugleichen. Wenn ein Stromausfall auftritt und in kurzer Zeit wiederhergestellt wird, kann dies zu Schäden an den angeschlossenen Geräten führen. Um diese Art von Schäden zu vermeiden, prüfen Sie bitte vor der Installation, ob das Klimagerät mit einer Zeitverzögerungsfunktion ausgestattet ist. Andernfalls löst der Wechselrichter einen Überlastungsfehler aus und schaltet den Ausgang ab, um Ihr Gerät zu schützen, aber manchmal verursacht er dennoch interne Schäden an der Klimaanlage.

3.5 PV-Anschluss

Bevor Sie die PV-Module anschließen, installieren Sie bitte einen separaten DC-Schutzschalter zwischen Wechselrichter und PV-Modulen. Für die Sicherheit des Systems und einen effizienten Betrieb ist es sehr wichtig, ein geeignetes Kabel für den Anschluss der PV-Module zu verwenden. Um die Verletzungsgefahr zu verringern, verwenden Sie bitte die richtige empfohlene Kabelgröße wie unten angegeben.

Modell	Kabelgröße	Kabel(mm²)
5/6/8/10/12KW	12AWG	4

Tabelle 3-4 Kabelgröße

Um Fehlfunktionen zu vermeiden, dürfen Sie keine PV-Module mit möglichem Leckstrom an den Wechselrichter anschließen. Beispielsweise verursachen geerdete PV-Module Leckströme zum Wechselrichter. Wenn Sie PV-Module verwenden, stellen Sie bitte sicher, dass PV+ und PV- des Solarmoduls nicht mit der Erdungsschiene des Systems verbunden sind.

Es wird empfohlen, eine PV-Anschlussdose mit Überspannungsschutz zu verwenden. Andernfalls wird der Wechselrichter bei Blitzeinschlag in die PV-Module beschädigt.

3.5.1 Auswahl der PV-Module:

Bei der Auswahl geeigneter PV-Module sollten Sie die folgenden Parameter berücksichtigen:

- 1) Die Leerlaufspannung (Voc) der PV-Module darf die max. PV-Generator-Leerlaufspannung des Wechselrichters.
- 2) Die Leerlaufspannung (Voc) der PV-Module sollte höher sein als die minimale Startspannung.
- 3) Die für den Anschluss an diesen Wechselrichter verwendeten PV-Module müssen der Klasse A angehören und gemäß IEC 61730 zertifiziert sein.

Wechselrichter Modell	5KW	6KW	8KW	10KW	12KW
PV-Eingangsspannung	550V (160V~800V)				
PV-Array MPPT Spannungsbereich	200V-650V				
Anzahl der MPP-Tracker	2				
Anzahl der Strings pro MPP-Tracker	1+1	1+1	1+1	2+1	2+1

Tabelle 3-5

3.5.2 Anschluss der PV-Modulkabel:

- 1. Schalten Sie den Hauptschalter der Netzversorgung (AC) aus.
- 2. Schalten Sie den Gleichstromsolator AUS.
- 3. Schließen Sie den PV-Eingangsstecker an den Wechselrichter an.

Sicherheitshinweis:

Wenn Sie PV-Module verwenden, stellen Sie bitte sicher, dass PV+ und PV- des Solarmoduls nicht mit der Erdungsschiene des Systems verbunden sind.

Sicherheitshinweis:

Vergewissern Sie sich vor dem Anschluss, dass die Polung der Spannung des PV-Generators mit den Symbolen "DC+" und "DC-" übereinstimmt.

Sicherheitshinweis:

Stellen Sie vor dem Anschluss des Wechselrichters sicher, dass die Leerlaufspannung des PV-Generators innerhalb der 1000 V des Wechselrichters liegt.

Sicherheitshinweis:

Bitte verwenden Sie für die PV-Anlage zugelassene DC-Kabel.

Kaheltun	Querschnitt (mm ²)			
киренур	Reichweite	Empfohlener Wert		
Industrieübliches PV-Kabel (Modell: PV1-F)	4.0~6.0 (12~10AWG)	4.0(12AWG)		

Die Schritte zur Montage der DC-Steckverbinder sind im Folgenden aufgeführt:

a) Das Gleichstromkabel ca. 7 mm abisolieren und die Überwurfmutter des Steckers demontieren (siehe Abbildung 5.3).

b) Crimpen von Metallklemmen mit einer Crimpzange wie in Abbildung 5.4 gezeigt.

c) Stecken Sie den Kontaktstift in den oberen Teil des Steckers und schrauben Sie die Hutmutter auf den oberen Teil des Steckers. (wie in Abbildung 5.5 gezeigt).

d) Stecken Sie schließlich den DC-Stecker in den positiven und negativen Eingang des Wechselrichters, wie in Abbildung 5.6 dargestellt.

Warnung:

Das Sonnenlicht, das auf das Panel scheint, erzeugt eine hohe Spannung, die in Reihe geschaltet lebensgefährlich sein kann. Daher muss das Solarpanel vor dem Anschluss der DC-Eingangsleitung mit einem lichtundurchlässigen Material abgedeckt werden und der DC-Schalter sollte auf "OFF" stehen, da sonst die hohe Spannung des Wechselrichters zu lebensbedrohlichen Zuständen führen kann.

Warnung:

Verwenden Sie den Gleichstromanschluss des Zubehörs. Verbinden Sie nicht die Stecker verschiedener Hersteller miteinander.

3.6 CT-Anschluss

*Hinweis: Wenn die Ablesung der Lastleistung auf der LCD-Anzeige nicht korrekt ist, drehen Sie bitte den Stromwandlerpfeil um.

3.6.1 Zähleranschluss

Warnung:

Wenn sich der Wechselrichter im off-grid-Zustand befindet, muss die N-Leitung an die Erde angeschlossen werden.

Warnung:

Bei der endgültigen Installation muss ein nach IEC 60947-1 und IEC 60947-2 zertifizierter Trennschalter mit dem Gerät installiert werden.

3.7 Erdungsanschluss (obligatorisch)

Das Erdungskabel muss mit der Erdungsplatte auf der Netzseite verbunden werden, um einen elektrischen Schlag zu vermeiden, wenn der ursprüngliche Schutzleiter ausfällt.

3.8 3.8 WIFI-Verbindung

Für die Konfiguration des Wi-Fi-Plugs beachten Sie bitte die Abbildungen des Wi-Fi-Plugs.

Dieses Diagramm ist ein Beispiel für eine Anwendung, bei der der Neutralleiter im Verteilerkasten vom PE getrennt ist.

Für Länder wie China, Deutschland, die Tschechische Republik, Italien, etc. beachten Sie bitte die örtlichen Verdrahtungsvorschriften!

Hinweis: Die Backup-Funktion ist auf dem deutschen Markt optional. Bitte lassen Sie die Backup-Seite leer, wenn die Backup-Funktion im Wechselrichter nicht verfügbar ist.

21

QAC-Unterbrecher für Ersatzlast SUN 5K-SG-EU: 16A AC breaker SUN 6K-SG-EU: 16A AC breaker SUN 8K-SG-EU: 20A AC breaker

SUN 10K-SG-EU:32A AC breaker

SUN 12K-SG-EU:32A AC breaker (3)AC-Unterbrecher für das Netz SUN 5K-SG-EU: 63A AC breaker SUN 6K-SG-EU: 63A AC breaker SUN 10K-SG-EU: 63A AC breaker SUN 12K-SG-EU: 63A AC breaker

④AC-Unterbrecher f
ür die Hauslast Depends on household loads

3.11 Typisches Anwendungsdiagramm eines Dieselgenerators

300A DC breaker (2) AC Unterbecher für Ersatzlast SUN 5K-SG-EU: 16A AC breaker SUN 6K-SG-EU: 16A AC breaker SUN 8K-SG-EU: 20A AC breakerSUN 10K-SG-EU:

32A AC breakerSUN 12K-SG-EU: 32A AC breaker

3AC-Unterbrecher für Generator SUN 5K-SG-EU: 63A AC breaker SUN 6K-SG-EU: 63A AC breaker SUN 8K-SG-EU: 63A AC breaker SUN 10K-SG-EU: 63A AC breaker SUN 12K-SG-EU: 63A AC Unterbrecher

Generator

4. Bedienung

4.1 Einschalten/Ausschalten

Sobald das Gerät ordnungsgemäß installiert wurde und die Batterien gut angeschlossen sind, drücken Sie einfach die Ein/Aus-Taste (auf der linken Seite des Gehäuses), um das Gerät einzuschalten. Wenn das System ohne angeschlossene Batterie, aber mit PV oder Netz verbunden ist und die ON/OFF-Taste ausgeschaltet ist, leuchtet das LCD immer noch auf (das Display zeigt OFF). In diesem Zustand, wenn Sie die ON/OFF-Taste einschalten und NO Batterie auswählen, kann das System immer noch funktionieren.

4.2 Bedienung und Anzeigefeld

Das Bedien- und Anzeigefeld, das in der folgenden Abbildung dargestellt ist, befindet sich auf der Vorderseite des Wechselrichters.

Es umfasst vier Anzeigen, vier Funktionstasten und ein LCD-Display, das den Betriebsstatus und die Eingangs-/Ausgangsleistungsinformationen anzeigt.

	LED Anzeige	Nachricht
DC	Grünes LED-Volllicht	PV-Anschluss normal
AC	Grünes LED-Volllicht	Netzanschluss normal
Normal	Grünes LED-Volllicht	Wechselrichterbetrieb normal
Alarm	Rote LED-Vollicht	Störung oder Warnung

Tabelle 4-1 LED-Anzeigen

Funktionstaste	Beschreibung
Esc	Zum Verlassen des Einstellungsmodus
Up	Zur vorherigen Auswahl gehen
Down	Weiter zur nächsten Auswahl
Enter	Bestätigen der Auswahl

Tabelle 4-2 Funktionstasten

5. LCD-Display-Symbole

5.1 Hauptbildschirm

Der LCD-Bildschirm ist ein Touchscreen, auf dem die allgemeinen Informationen des Wechselrichters angezeigt werden.

- 1. Das Symbol in der Mitte des Startbildschirms zeigt an, dass sich das System im Normalbetrieb befindet. Wenn es sich in "comm./F01~F64" verwandelt, bedeutet dies, dass der Wechselrichter Kommunikationsfehler oder andere Fehler hat; die Fehlermeldung wird unter diesem Symbol angezeigt (F01-F64-Fehler, detaillierte Fehlerinformationen können im Menü Systemalarme angezeigt werden).
- 2. Am oberen Rand des Bildschirms wird die Uhrzeit angezeigt.
- 3. System-Setup-Symbol, drücken Sie diese Taste, können Sie in das System-Setup-Bildschirm, der einschließlich Basic Setup, Batterie-Setup, Grid Setup, System Work Mode, Generator-Port verwenden, erweiterte Funktion und Li-Batt-Info.
- 4. Der Hauptbildschirm zeigt die Informationen einschließlich Solar, Netz, Last und Batterie. Es zeigt auch die Energieflussrichtung durch einen Pfeil an. Wenn die Leistung annähernd hoch ist, ändert sich die Farbe der Paneele von grün auf rot, so dass die Systeminformationen auf dem Hauptbildschirm anschaulich dargestellt werden.
 - · PV-Strom und Laststrom sind immer positiv.
 - · Netzstrom negativ bedeutet Verkauf an das Netz, positiv bedeutet Bezug vom Netz.
 - · Batterieleistung negativ bedeutet Laden, positiv bedeutet Entladen.

5.1.1 LCD-Betrieb flow chart

5.2 Solarstrom-Kurve

Li-BMS Mean Voltage:50.34V Charging Voltage:53.2V Total Current:55.00A Discharging Voltage:47.0V Mean Temp:23.5C Charging current:50A Total SOC :38% Discharging current:25A Dump Energy:57Ah Li-BMS

L	-1-Di	/13							
			Temp	SOC	Energy	Cha	irge	Fault	
						Volt	Curr		\square
1	50.38V	19.70A	30.6C	52.0%	26.0Ah		0.0A	0 0 0	
2	50.33V	19.10A	31.0C	51.0%	25.5Ah	53.2V	25.0A		Sum
3	50.30V	16.90A	30.2C	12.0%	6.0Ah	53.2V	25.0A	0 0 0	
	0.00V	0.00A	0.0C	0.0%	0.0Ah				Data
		0.00A							
	0.00V	0.00A	0.0C	0.0%					
									Details
									Data
12									
14									
15									

Dies ist die Detailseite der Batterie.

Wenn Sie eine Lithium-Batterie verwenden,

können Sie die BMS-Seite aufrufen.

5.3 Kurvenseite-Solar & Last & Netz

Solarenergie Kurve für täglich, monatlich, jährlich und insgesamt kann grob auf dem LCD überprüft werden, für mehr Genauigkeit Stromerzeugung, pls Check auf dem Überwachungssystem. Klicken Sie auf den Pfeil nach oben und unten, um die Leistungskurve für verschiedene Zeiträume zu überprüfen.

5.4 Menü Systemeinstellungen

System Se	tup	
		Dies ist die Systemeinstellungsseite.
Battery	System Work Mode	
Setting	Grid Setting Gen Port Use	
Basic Setting	Advanced Function Device Info.	

5.5 Menü Grundeinstellungen

Factory Reset: Alle Parameter des Wechselrichters zurücksetzen.

Lock out all changes: Aktivieren Sie dieses Menü, um Parameter einzustellen, die gesperrt werden müssen und nicht eingestellt werden können. Vor dem erfolgreichen Zurücksetzen auf die Werkseinstellungen und dem Sperren der Systeme müssen Sie ein Passwort Das Kennwort für die Werkseinstellungen lautet 9999 und für die Sperrung 7777.

5.6 Menü Batterieeinstellungen

Battery capacity: er teilt dem Deye Hybrid-Wechselrichter die Größe Ihrer Batteriebank mit.

Use Batt V: Für alle Einstellungen die Batteriespannung (V) verwenden.

Use Batt %: Verwenden Sie für alle Einstellungen den Batterie-SOC-Wert (%).

Max. A charge/discharge: Maximaler Lade-/Entladestrom der Batterie (0-115A für das 5KW-Modell, 0-90A für das 3,6KW-Modell).

Für AGM und Flooded, empfehlen wir Ah Batteriegröße x 20%= Lade/Entlade Ampere.

. Für Lithium empfehlen wir Ah Batteriegröße x 50% = Lade-/Entladestrom.

. Für das Gel sind die Anweisungen des Herstellers zu beachten. **No Batt:** Kreuzen Sie diesen Punkt an, wenn keine Batterie an das System angeschlossen ist.

Active battery: Diese Funktion hilft bei der Wiederherstellung einer zu stark entladenen Batterie durch langsames Aufladen über die Solaranlage oder das Netz.

Dies ist die Seite für das Batterie-Setup. (1)(3)

Start =30%: Bei 30 % S.O.C. startet das System automatisch einen angeschlossenen Generator, um die Batteriebank zu laden.

A = 40A: Laderate von 40A vom angeschlossenen Generator in Ampere.

Gen Charge: nutzt den Generator-Eingang des Systems, um die Batteriebank von einem angeschlossenen Generator zu laden.

Gen Signal: Normalerweise offenes Relais, das sich schließt, wenn der Signalzustand Gen Start aktiv ist.

Gen Force: Wenn der Generator angeschlossen ist, wird er gezwungen, den Generator zu starten, ohne dass andere Bedingungen erfüllt sind.

Dies ist Grid Charge, die Sie auswählen müssen. (2) Start =30%: Keine Verwendung, nur für Anpassungen. A = 40A: Sie zeigt den Strom an, mit dem das

Netz die Batterie lädt.

Grid Charge: : Es zeigt an, dass das Netz die Batterie auflädt. Grid Signal: Deaktivieren.

Auf dieser Seite erfahren Sie, wie die PV-Anlage und der Dieselgenerator die Last und die Batterie versorgen.

Generator

		ᄂ
Power: 6000W	Today=10 KWH	F
	Total =10 KWH	E
V_L1: 230V	P_L1: 2KW	
V_L2: 230V	P_L2: 2KW	
V_L3: 230V	P_L3: 2KW	
		1

Diese Seite gibt Auskunft über die Ausgangsspannung, Frequenz und Leistung des Generators. Und, wie viel Energie vom Generator verbraucht wird.

Battery Setting				
			J	
Lithium Mode	00		J	
Shutdown	10%	Set3		
Low Batt	20%			
Low Datt	2078		ł	
Restart	40%			
			ĺ	

Lithium Mode: Dies ist ein BMS-Protokoll, bitte beziehen Sie sich auf das Dokument (Approved Battery).

Shutdown 10%: Sie zeigt an, dass sich der Wechselrichter abschaltet, wenn der SOC unter diesem Wert liegt.

Low Batt 20%: Sie zeigt an, dass der Wechselrichter einen Alarm auslöst, wenn der SOC unter diesem Wert liegt.

Restart 40%: Die Batteriespannung bei 40 % AC-Ausgang wird wiederhergestellt.

Empfohlene Batterieeinstellungen

Batterietyp	Absorptionsphase	Schwebestufe	Drehmomentwert (alle 30 Tage 3 Std.)	
AGM (or PCC)	14.2v (57.6v)	13.4v (53.6v)	14.2v(57.6v)	
Gel	14.1v (56.4v)	13.5v (54.0v)		
feucht	14.7v (59.0v)	13.7v (55.0v)	14.7v(59.0v)	
Lithium	Befolgen Sie seine BMS-Spannungsparameter			

5.7 Setup-Menü des Systemarbeitsmodus

Arbeitsmodus

Selling First: In diesem Modus kann der Hybrid-Wechselrichter überschüssigen Strom, der von den Solarmodulen erzeugt wird, an das Netz zurückverkaufen. Wenn die Nutzungszeit aktiv ist, kann auch die Batterieenergie ins Netz verkauft werden. Die PV-Energie wird verwendet, um die Last zu versorgen und die Batterie zu laden, und die überschüssige Energie fließt dann ins Netz.

Die Priorität der Stromquelle für die Last ist wie folgt:

1. Sonnenkollektoren.

2. Netz.

3. Batterien (bis zum Erreichen der programmierbaren %-Entladung).

Zero Export To Load: Der Hybrid-Wechselrichter versorgt nur die angeschlossene Ersatzlast mit Strom. Der Hybrid-Wechselrichter liefert weder Strom an die Hauslast noch verkauft er Strom an das Netz. Der integrierte Stromwandler erkennt, wenn Strom ins Netz zurückfließt, und reduziert die Leistung des Wechselrichters nur, um die lokale Last zu versorgen und die Batterie zu laden.

Zero Export To CT: Der Hybrid-Wechselrichter versorgt nicht nur die angeschlossene Backup-Last, sondern auch die angeschlossene Haushaltslast mit Strom. Wenn die PV-Leistung und die Batterieleistung nicht ausreichen, wird die Energie aus dem Netz als Ergänzung verwendet. Der Hybrid-Wechselrichter gibt keinen Strom an das Netz ab. In diesem Modus wird ein Stromwandler benötigt. Die InstallationDie Installationsmethode für den Stromwandler finden Sie in Kapitel 3.6 Stromwandleranschluss. Der externe Stromwandler erkennt, wenn Strom ins Netz zurückfließt, und reduziert die Leistung des Wechselrichters nur, um die lokale Last zu versorgen, die Batterie zu laden und die Eigenverbraucher zu versorgen.

Solar Sell: "Solar sell" steht für Null-Export an die Last oder Null-Export an den Stromwandler: Wenn dieses Element aktiv ist, kann die überschüssige Energie zurück ins Netz verkauft werden. Wenn diese Option aktiviert ist, wird die PV-Stromquelle vorrangig wie folgt genutzt: Verbrauch unter Last, Laden der Batterie und Einspeisung ins Netz.

Max. sell power: Die maximale Ausgangsleistung darf ins Netz fließen.

Zero-export Power: für den Nullexportmodus gibt sie die Netzausgangsleistung an. Es wird empfohlen, diesen Wert auf 20-100 W einzustellen, um sicherzustellen, dass der Hybrid-Wechselrichter keinen Strom ins Netz einspeist.

Energy Pattern: Priorität der PV-Stromquelle.

Batt First: Der PV-Strom wird zunächst zum Laden der Batterie und dann zur Versorgung der Last verwendet. Wenn die PV-Leistung nicht ausreicht, wird das Netz gleichzeitig die Batterie und die Last versorgen.

Load First: Der PV-Strom wird zunächst zur Versorgung der Last und dann zum Laden der Batterie verwendet. Wenn die PV-Leistung nicht ausreicht, wird das Netz die Last mit Strom versorgen.

Max Solar Power: erlaubt die maximale DC-Eingangsleistung.

Grid Peak-shaving: Wenn sie aktiv ist, wird die Netzausgangsleistung auf den eingestellten Wert begrenzt. Wenn die Lastleistung den zulässigen Wert überschreitet, werden PV-Energie und Batterie als Ergänzung verwendet. Wenn die Lastanforderungen immer noch nicht erfüllt werden können, wird die Netzleistung erhöht, um den Lastbedarf zu decken.

System Work Mode					
Grid		Time	Of Use		
Charge Con		Гime	Power	Batt	Work
	01:00	5:00	12000	49.0V	Mode2
	05:00	9:00	12000	50.2V	
	09:00	13:00	12000	50.9V	
	13:00	17:00	12000	51.4V	
	17:00	21:00	12000	47.1V	R
	21:00	01:00	12000	49.0V	

System Work Mode						
2 Grid			Time	Of Use		
Charge C	Gen	1	īme	Power	Batt	Work
\checkmark		01:00	5:00	12000	80%	Mode2
\checkmark		05:00	8:00	12000	40%	
		08:00	10:00	12000	40%	
\checkmark		10:00	15:00	12000	100%	
		15:00	18:00	12000	40%	
		18:00	01:00	12000	35%	

Time of use: wird verwendet, um zu programmieren.

wann das Netz oder der Generator zum Laden der Batterie verwendet werden soll und wann die Batterie entladen soll, um die Last zu versorgen. Markieren Sie nur "Time Of Use", dann werden die folgenden Punkte berücksichtigt Note: Im "Selling First"-Modus und bei Klick auf "Time of Use" wird der Batteriestrom ins Netz verkauft. Grid charge: das Netz nutzen, um die Batterie innerhalb eines bestimmten Zeitraums aufzuladen. Gen charge: einen Dieselgenerator verwenden, um die Batterie in einem bestimmten Zeitraum aufzuladen. Time: Echtzeit, Bereich von 01:00-24:00. Hinweis: Bei vorhandenem Netz ist nur die "Nutzungszeit" angekreuzt, dann wird die Batterie entladen. Andernfalls entlädt sich die Batterie nicht. auch wenn der SOC der Batterie voll ist. Im Off-Grid-Modus (wenn kein Netz verfügbar ist, läuft der) Wechselrichter automatisch im netzunabhängigen Modus Power: Max. zulässige Entladeleistung der Batterie. Batt(V or SOC %): SOC % oder Spannung der Batterie zu dem Zeitpunkt, zu dem die Aktion erfolgen soll.

Zum Beispiel

Während 01:00-05:00,

Liegt der SOC-Wert der Batterie unter 80 %, wird die Batterie im Netz geladen, bis der SOC-Wert der Batterie 80 % erreicht. Während 05:00-08:00.

Ist der SOC-Wert der Batterie höher als 40 %, entlädt der Hybrid-Wechselrichter die Batterie, bis der SOC-Wert 40 % erreicht, wenn der SOC-Wert der Batterie unter 40 % liegt, lädt das Netz den SOC-Wert der Batterie auf 40 % auf.

Während 08:00-10:00,

Wenn der SOC der Batterie höher als 40% ist, entlädt der Hybrid-Wechselrichterdie Batterie, bis der SOC-Wert 40 % erreicht. Während 10:00-15:00,

Wenn der SOC der Batterie höher als 80 % ist, entlädt der Hybrid-Wechselrichter die Batterie, bis der SOC 80 % erreicht.

Während 15:00-18:00,

Wenn der SOC-Wert der Batterie höher als 40 % ist, entlädt der Hybrid-Wechselrichter die Batterie, bis der SOC-Wert 40 % erreicht. Während 18:00-01:00,

Wenn der SOC der Batterie höher als 35 % ist, entlädt der Hybrid-Wechselrichter die Batterie, bis der SOC 35 % erreicht.

5.8 Menü Rastereinstellungen

Grid Mode: Allgemeine Norm、UL1741 & IEEE1547、 CPUC RULE21、SRD-UL-1741、CEI 0-21、Australien, Australien B、Australien C、EN50549_CZ-PPDS(>16A), Neuseeland、VDE4105、OVE-Richtlinie R25.

Bitte beachten Sie den örtlichen Netzcode und wählen Sie dann den entsprechenden Netzstandard. Grid level: es gibt mehrere Spannungsstufen für den Wechselrichter

LN:230VAC LL:400VAC,LN:240VAC LL:420VAC, LN:120VAC LL:208VAC, LN:133VAC LL:230VAC. IT system: Fur das II-Netz wird die Netzspannung

(Wenn es sich bei Ihrem Netz um ein IT-System handelt, aktivieren Sie bitte die Option "IT-System" und kreuzen Sie bei "Netzniveau" den Wert 133-3P an, wie in der Abbildung unten gezeigt.)

Rz: Großer Erdungswiderstand. Oder das System hat keinen Neutralleiter

Normal	connect:	Der	zulässige	Netzspann	ungs-
/Frequenzt	pereich	beim	erstmaligen	Anschluss	des
Wechselric	hters an c	las Netz.			

Reconnect after trip: Der zulässige Netzspannungs-/Frequenzbereich /Frequenzbereich für den Wechselrichter verbindet das Netz nach der Abschaltung des Wechselrichters vom Netz.

Reconnection time: die Wartezeit, bis sich der Wechselrichter wieder mit dem Netz verbindet PF: Leistungsfaktor, der zur Anpassung der Blindleistung des Wechselrichters verwendet wird

	Gri	d Set	tin	g/IP	Pro	tect	ion			
		Ove	r vol	tage U>(10 min.	. runnii	ng mean)	260.0V		tir
	HV3	265.0V				HF3	51.50Hz		Grid	
(1	HV2	265.0V		0.10s	(2)		51.50Hz	0.10s	Set3	
	HV1	265.0V		0.10s			51.50Hz	0.10s		
	LV1	185.0V		0.10s			48.00Hz	0.10s		
	LV2	185.0V		0.10s			48.00Hz	0.10s		
	LV3	185.0V					48.00Hz			

HV1: Überspannungsschutzpunkt der Stufe 1; 1 HV2: Überspannungsschutzpunkt der Stufe 2; 2 0.10s-Trip
ime.
HV3: Überspannungsschutzpunkt der Stufe 3.
LV1: Unterspannungsschutzpunkt der Stufe 1;
LV2: Unterspannungsschutzpunkt der Stufe 2 ; LV3: Unterspannungsschutzpunkt der Stufe 3.
HF1: Überfrequenzschutzpunkt der Stufe 1; HF2: Überfrequenzschutzpunkt der Stufe 2; HF3: Überfrequenzschutzpunkt der Stufe 3.
LF1: Stufe 1 unter dem Frequenzschutzpunkt;

LF2: Stufe 2 unter dem Frequenzschutzpunkt:

Grid Settir	ng/F(W)		
	F(W)			
Over frequency	,	Droop F	40%P/Hz	Grid
Start freq F	50.20Hz	Stop freq F	51.5Hz	Set4
Start delay F	0.00s	Stop delay F	0.00s	
Under frequence	ÿ	Droop F	40%PE/Hz	
Start freq F	49.80Hz	Stop freq F	49.80Hz	
	0.00s		0.00s	

Grid Setting/V(W) V(Q)

FW: Diese Wechselrichterserie ist in der Lage, die Ausgangsleistung des Wechselrichters an die Netzfrequenz anzupassen.

Droop F: Prozentsatz der Nennleistung pro Hz Beispiel: "Start freq F > 50.2Hz, Stop freq F < 51.5, Droop F=40%P/Hz" Wenn die Netzfrequenz 50.2Hz erreicht, verringert der Wechselrichter seine Wirkleistung mit Droop F von 40%. Wenn die Netzfrequenz weniger als 50,1 Hz beträgt, hört der Wechselrichter auf, die Ausgangsleistung zu verringern. Für die detaillierten Einstellungswerte beachten Sie bitte den Inkalen Grid Code

 V(W): Er dient der Anpassung der Wechselrichter-Wirkleistung an die eingestellte Netzspannung.
 V(Q): Er dient dazu, die Blindleistung des Wechselrichters entsprechend der eingestellten Netzspannung anzupassen.

Mit dieser Funktion wird die Ausgangsleistung des Wechselrichters (Wirk- und Blindleistung) bei Änderungen der Netzspannung angepasst.

Zum Beispiel: V2=110%, P2=80%. Wenn die Netzspannung das 110-fache der Netznennspannung erreicht, wird die Ausgangsleistung des Wechselrichters auf 80 % der Nennleistung reduziert.

Zum Beispiel: V1=94%, Q1=44%. Wenn die Netzspannung das 94-fache der Netznennspannung erreicht, wird die Ausgangsleistung des Wechselrichters auf 44% Blindleistung reduziert. Für die detaillierten Einstellwerte beachten Sie bitte die örtlichen Netzvorschriften.

P(Q): Er dient dazu, die Blindleistung des
Wechselrichters entsprechend der eingestellten
Wirkleistung anzupassen.
P(PF): Er wird verwendet, um den PF des
Wechselrichters entsprechend der eingestellten
Wirkleistung anzupassen.
Für die detaillierten Einstellwerte beachten Sie bitte den lokalen Grid Code.

Reserved: Diese Funktion ist reserviert. Sie wird nicht empfohlen.

5.9 Generatoranschluss Verwendung Setup-Menü

Generator input rated power: erlaubt Max. Leistung vom Dieselgenerator. GEN connect to grid input: Schließen Sie den Dieselgenerator an den Netzeingangsanschluss an.

Smart Load Output: In diesem Modus wird der Gen-Eingangsanschluss als Ausgang verwendet, der nur dann Strom erhält, wenn der SOC-Wert der Batterie und die PV-Leistung über einem vom Benutzer programmierbaren Schwellenwert liegen.

e.g. ON: 100%, OFF=95%: Wenn die PV-Leistung

500W übersteigt und der SOC der Batteriebank 100% erreicht, schaltet sich der Smart Load Port automatisch ein und versorgt die angeschlossene Last. Wenn der SOC der Batteriebank < 95% ist, schaltet sich der Smart Load Port automatisch aus.

Smart Load OFF Batt

• SOC der Batterie, bei dem sich die intelligente Last einschalten wird.

Smart Load ON Batt

• Batterie-SOC, bei dem sich die Smart-Last einschaltet. gleichzeitig und dann schaltet sich die Smart-Last ein.

On Grid always on: Wenn Sie auf "on Grid always on" klicken, schaltet sich die intelligente Last ein, wenn das Netz vorhanden ist. Micro Inv Input: Zur Verwendung des Generator-Eingangsports als Mikro-Wechselrichter an einem netzgekoppelten Wechselrichter-Eingang (AC-gekoppelt), diese Funktion funktioniert auch mit "netzgekoppelten" Wechselrichtern.

* Micro Inv Input OFF: Wenn der SOC-Wert der Batterie den eingestellten Wert überschreitet, schaltet sich der Microinverter oder der netzgekoppelte Wechselrichter ab.

* Micro Inv Input ON: Wenn der SOC-Wert der Batterie niedriger als der eingestellte Wert ist, beginnt der Microinverter oder der netzgekoppelte Wechselrichter zu arbeiten.

AC Couple Fre High: Wenn Sie "Micro Inv input" wählen, wird die Ausgangsleistung des Microinverters während des Prozesses linear abnehmen, wenn der SOC der Batterie allmählich den Einstellwert (OFF) erreicht. Wenn der SOC der Batterie den Einstellwert (OFF) erreicht, wird die Systemfrequenz den Einstellwert erreichen (AC-Kopplung Fre high) und der Mikrowechselrichter wird aufhören zu arbeiten.

MI-Export ins Netz cutoff: Stoppt die Einspeisung des vom Mikrowechselrichter erzeugten Stroms in das Netz.

* Hinweis: Micro Inv Input OFF und On ist nur für bestimmte FW-Versionen gültig.

5.10 Menü für erweiterte Funktionen

Solar Arc Fault ON: Dies gilt nur für die USA.

System selfcheck: Deaktivieren. Dies gilt nur für das Werk. Gen Peak-shaving: Freigabe Wenn die Leistung des Generators den Nennwert überschreitet, stellt der Wechselrichter den redundanten Teil bereit, um sicherzustellen, dass der Generator nicht überlastet wird.

DRM: Für die Norm AS4777

Backup Delay: Reserviert

BMS_Err_Stop: Wenn sie aktiv ist und das Batterie-BMS nicht mit dem Wechselrichter kommunizieren kann, stellt der Wechselrichter den Betrieb ein und meldet einen Fehler.

Signal island mode: Wenn "Signalinselbetrieb" aktiviert ist und sich der Wechselrichter im Off-Netzbetrieb befindet, schaltet das Relais auf der neutralen Leitung (Lastanschluss N-Leitung) ein und die N-Leitung (Lastanschluss N-Leitung) wird mit der Wechstrichterer

Asymmetric phase feeding: Die Leistung, die der PV-Wechselrichter in das Netz einspeist, ist ausgeglichen.

Ex_Meter For CT: Bei Verwendung des Null-Exports in den Stromwandlermodus kann der Hybrid-Wechselrichter die Funktion EX_Meter For CT wählen und verschiedene Zähler verwenden, z. B. CHNT und Eastron.

5.11 Setup-Menü Geräteinformationen

Device Info.			
SUN-12K Inverter ID: 21 HMI: Ver 1001-8010 MAIN:Ver	02199870 Flash r2002-1046-1707		Auf dieser Seite werden Wechselrichter-ID, Wechselrichterversion und Alarmcodes angezeigt.
Alarms Code	Occurred	Device	
F13 Grid_Mode_changed	2021-06-11 13:17	Info	
F23 Tz_GFCI_OC_Fault	2021-06-11 08:23		HMI: LCD -Version
F13 Grid_Mode_changed	2021-06-11 08:21		MAIN: FW-Version der Steuerkarte
F56 DC_VoltLow_Fault	2021-06-10 13:05		

6. Modus Modus I:Basic

Modus II: mit Generator

Modus III: mit Smart-Load

Modus IV: AC-Paar

Die erste Priorität des Systems ist immer die PV-Leistung, die zweite und dritte Priorität ist je nach Einstellung die Batteriebank oder das Netz. Die letzte Reservestromquelle ist der Generator, wenn er verfügbar ist.

7. Begrenzung der Haftung

Zusätzlich zu der oben beschriebenen Produktgarantie sehen die staatlichen und örtlichen Gesetze und Vorschriften eine finanzielle Entschädigung für den Stromanschluss des Produkts vor (einschließlich der Verletzung stillschweigender Bedingungen und Garantien). Das Unternehmen erklärt hiermit, dass die Bedingungen des Produkts und der Police nicht und nur in einem begrenzten Umfang jegliche Haftung rechtlich ausschließen können.

Errorcode	Beschreibung	Lösungen
F01	DC-Eingang Verpolungsfehler	 Überprüfen Sie die Polarität des PV-Eingangs 2, wenn Sie nicht in den Normalzustand zurückkehren können, wenden Sie sich an uns.
F07	DC_START_Fehlschlag	 Die BUS-Spannung kann nicht aus PV oder Batterie erzeugt werden. Starten Sie den Wechselrichter neu. Wenn der Fehler weiterhin besteht, wenden Sie sich bitte an uns, um Hilfe zu erhalten.
F13	Arbeitsmoduswechsel	 Wenn sich der Netztyp und die Frequenz geändert haben, wird F13 gemeldet; Wenn der Batteriemodus in den Modus "Keine Batterie" geändert wurde, wird F13 gemeldet; Bei einigen alten FW-Versionen wird F13 gemeldet, wenn sich der Arbeitsmodus des Systems ändert; Im Allgemeinen verschwindet sie automatisch, wenn F13 angezeigt wird; Wenn immer noch dasselbe passiert, schalten Sie den DC-Schalter und den AC-Schalter aus, warten Sie eine Minute und schalten Sie dann den DC/AC-Schalter wieder ein.; Suchen Sie Hilfe bei uns, wenn Sie nicht in den Normalzustand zurückkehren können.
F15	AC-Überstromfehler der Software	 AC-seitiger Überstromfehler 1. Prüfen Sie, ob die Leistung der Ersatzlast und die Leistung der gemeinsamen Last innerhalb des Bereichs liegen; 2. Starten Sie das Gerät neu und prüfen Sie, ob es sich im Normalzustand befindet; 3. Suchen Sie Hilfe bei uns, wenn Sie nicht in den Normalzustand zurückkehren können.
F16	AC-Ableitstromfehler	Fehler durch Ableitstrom 1, Prüfen Sie den Erdungsanschluss des PV-seitigen Kabels 2, Starten Sie das System 2-3 Mal neu 3, Wenn der Fehler weiterhin besteht, wenden Sie sich bitte an uns, damit wir Ihnen helfen können.
F18	AC-Überstromfehler der Hardware	 AC-seitiger Überstromfehler 1. Prüfen Sie, ob die Ersatzlastleistung und die gemeinsame Lastleistung innerhalb des Bereichs liegen; 2. Starten Sie das Gerät neu und prüfen Sie, ob es sich im Normalzustand befindet; 3. Suchen Sie Hilfe bei uns, wenn Sie nicht in den Normalzustand zurückkehren können.
F20	DC-Überstromfehler der Hardware	 DC-seitiger Überstromfehler 1. Prüfen Sie den Anschluss des PV-Moduls und der Batterie; 2. Wenn der Wechselrichter im netzunabhängigen Modus mit einer hohen Leistungslast startet, kann er F20 melden. Bitte reduzieren Sie die angeschlossene Last; 3. Schalten Sie den DC-Schalter und den AC-Schalter aus, warten Sie eine Minute und schalten Sie dann den DC/AC- Schalter wieder ein; 4. Suchen Sie Hilfe bei uns, wenn Sie nicht in den Normalzustand zurückkehren können.

Errorcode	Beschreibung	Lösungen
F21	Tz_HV_Overcurr_Fehler	 BUS-Überstrom. 1, Überprüfen Sie den PV-Eingangsstrom und die Batteriestromeinstellung 2. Starten Sie das System 2[°]3 Mal neu. 3. Wenn der Fehler weiterhin besteht, wenden Sie sich bitte an uns, damit wir Ihnen helfen können.
F22	Tz_EmergStop_Fehler	Ferngesteuertes Herunterfahren 1, Es zeigt an, dass der Wechselrichter ferngesteuert ist.
F23	Tz_GFCI_OC_ Strom ist transienter Überstrom	Fehler durch Ableitstrom 1. Prüfen Sie die Erdung des PV-seitigen Kabels. 2. Starten Sie das System 2 [°] 3 Mal neu. 3. Wenn der Fehler immer noch besteht, kontaktieren Sie uns bitte für Hilfe.
F24	Ausfall der DC-Isolierung	 PV-Isolationswiderstand ist zu niedrig Prüfen Sie, ob die Verbindung von PV-Paneelen und Wechselrichter fest und korrekt ist; Prüfen Sie, ob das PE-Kabel des Wechselrichters mit der Erde verbunden ist; Bitten Sie uns um Hilfe, wenn Sie nicht in den Normalzustand zurückkehren bisteren.
F26	Die DC-Sammelschiene ist unsymmetrisch	 Können. Bitte warten Sie eine Weile und prüfen Sie, ob es normal ist; Wenn die Lastleistung der 3 Phasen sehr unterschiedlich ist, wird F26 angezeigt. wenn es einen DC-Leckstrom gibt, wird F26 gemeldet Starten Sie das System 2[°]3 Mal neu. Bitten Sie uns um Hilfe, wenn Sie nicht in den Normalzustand zurückkehren können.
F48	AC untere Frequenz	Netzfrequenz außerhalb des Bereichs 1. Prüfen Sie, ob die Frequenz innerhalb der Spezifikation liegt oder nicht; 2. Prüfen Sie, ob die AC-Kabel fest und korrekt angeschlossen sind; 3. Bitten Sie uns um Hilfe, wenn Sie nicht in den Normalzustand zurückkehren köngen
F29	Paralleler CAN-Bus-Fehler	 Überprüfen Sie im Parallelmodus den Anschluss des parallelen Kommunikationskabels und die Einstellung der Kommunikationsadresse des Hybridwechselrichters; Während der Startphase des Parallelsystems melden die Wechselrichter F29, aber wenn alle Wechselrichter eingeschaltet sind, verschwindet diese Meldung automatisch; Wenn der Fehler immer noch besteht, kontaktieren Sie uns bitte für Hilfe.
F34	AC Überstromfehler	 Überprüfen Sie die angeschlossene Backup-Last, stellen Sie sicher, dass sie im zulässigen Leistungsbereich liegt. Wenn der Fehler immer noch besteht, kontaktieren Sie uns bitte für Hilfe
F41	Stopp des Parallelsystems	 Überprüfen Sie den Betriebsstatus des Hybridwechselrichters. Wenn 1 Stück Hybrid-Wechselrichter ausgeschaltet ist, melden alle Hybrid-Wechselrichter F41 Fehler. Wenn der Fehler noch vorhanden ist, kontaktieren Sie uns bitte für Hilfe
F42	AC-Netz Niederspannung	 Fehler in der Netzspannung Prüfen Sie, ob die Wechselspannung im Bereich der Standardspannungsprüfung liegt; Prüfen Sie, ob die Netzwechselstromkabel fest und korrekt angeschlossen sind; Bitten Sie uns um Hilfe, wenn Sie nicht in den Normalzustand zurückkehren können.

Errorcode	Beschreibung	Lösungen
F46	Störung der Pufferbatterie	 Bitte überprüfen Sie jeden Batteriestatus, wie Spannung / SOC und Parameter usw., und stellen Sie sicher, dass alle Parameter gleich sind. Wenn der Fehler noch vorhanden ist, kontaktieren Sie uns bitte für Hilfe
F47	AC über Frequenz	Netzfrequenz außerhalb des Bereichs 1. Prüfen Sie, ob die Frequenz innerhalb der Spezifikation liegt oder nicht; 2. Prüfen Sie, ob die AC-Kabel fest und korrekt angeschlossen sind; 3. Bitten Sie uns um Hilfe, wenn Sie nicht in den Normalzustand zurückkehren können.
F48	AC untere Frequenz	 Netzfrequenz außerhalb des Bereichs 1. Prüfen Sie, ob die Frequenz innerhalb der Spezifikation liegt oder nicht; 2. Prüfen Sie, ob die AC-Kabel fest und korrekt angeschlossen sind; 3. Bitten Sie uns um Hilfe, wenn Sie nicht in den Normalzustand zurückkehren können.
F55	DC- Sammelschienenspannung ist zu hoch	 BUS-Spannung ist zu hoch Prüfen Sie, ob die Batteriespannung zu hoch ist; Prüfen Sie die PV-Eingangsspannung und stellen Sie sicher, dass sie innerhalb des zulässigen Bereichs liegt; Bitten Sie uns um Hilfe, wenn Sie nicht in den Normalzustand zurückkehren können.
F56	DC- Sammelschienenspannung ist zu niedrig	 Batteriespannung niedrig Prüfen Sie, ob die Batteriespannung zu niedrig ist; Wenn die Batteriespannung zu niedrig ist, laden Sie die Batterie mit Hilfe von PV oder Netz auf; Bitten Sie uns um Hilfe, wenn Sie nicht in den Normalzustand zurückkehren können.
F58	BMS-Kommunikationsfehler	 IDie Kommunikation zwischen Hybrid-Wechselrichter und Batterie-BMS wird unterbrochen, wenn "BMS_Err-Stop" aktiv. wenn Sie dies nicht sehen wollen, können Sie die Option "BMS_Err-Stop" auf dem LCD deaktivieren. Wenn der Fehler weiterhin besteht, kontaktieren Sie uns bitte für Hilfe
F62	DRMs0_stop	 die DRM-Funktion ist nur für den australischen Markt bestimmt. Prüfen Sie, ob die DRM-Funktion aktiv ist oder nicht. Suchen Sie Hilfe bei uns, wenn das System nach dem Neustart nicht in den Normalzustand zurückkehren kann.
F34	AC Überstromfehler	 Überprüfen Sie die angeschlossene Ersatzlast und stellen Sie sicher, dass sie im zulässigen Leistungsbereich liegt. Wenn der Fehler immer noch besteht, kontaktieren Sie uns bitte für Hilfe
F63	ARC-Störung	 Die ARC-Fehlererkennung gilt nur für den US-Markt; Überprüfen Sie die PV-Modulkabelverbindung und beheben Sie den Fehler; Suchen Sie Hilfe von uns, wenn Sie nicht zum normalen Zustand zurückkehren können.
F64	Ausfall des Kühlkörpers bei hoher Temperatur	 Die Temperatur des Kühlkörpers ist zu hoch 1. Prüfen Sie, ob die Temperatur der Arbeitsumgebung zu hoch ist; 2. Schalten Sie den Wechselrichter für 10 Minuten aus und starten Sie ihn erneut; 3. Bitten Sie uns um Hilfe, wenn Sie nicht in den Normalzustand zurückkehren können.

Tabelle 7-1 Störungsinformationen - 42 -

Unter der Leitung unseres Unternehmens senden die Kunden unsere Produkte zurück, damit unser Unternehmen die Wartung oder den Austausch gleichwertiger Produkte vornehmen kann. Die Kunden müssen die notwendigen Frachtkosten und andere damit verbundene Kosten tragen. Jeder Ersatz oder jede Reparatur des Produkts deckt die verbleibende Garantiezeit des Produkts ab. Wird ein Teil des Produkts oder eine Komponente während der Garantiezeit durch das Unternehmen selbst ersetzt, gehen alle Rechte und Interessen an dem Ersatzprodukt oder der Komponente auf das Unternehmen über.

Die Werksgarantie erstreckt sich nicht auf Schäden, die auf die folgenden Gründe zurückzuführen sind:

- · Schäden beim Transport der Ausrüstung ;
- · Schäden, die durch unsachgemäße Installation oder Inbetriebnahme verursacht wurden ;
- · Schäden, die durch Nichtbeachtung von Betriebs-, Installations- oder Wartungsanweisungen verursacht werden ;
- · Schäden, die durch Versuche verursacht werden, Produkte zu modifizieren, zu verändern oder zu reparieren ;
- · Schäden, die durch unsachgemäßen Gebrauch oder Betrieb verursacht werden ;
- · Schäden, die durch unzureichende Belüftung der Geräte verursacht werden ;
- · Schäden, die durch die Nichteinhaltung geltender Sicherheitsstandards oder -vorschriften verursacht wurden ;
- · Schäden, die durch Naturkatastrophen oder höhere Gewalt verursacht wurden (z. B. Hochwasser, Blitzschlag, Überspannung, Stürme, Brände usw.)

Darüber hinaus beeinträchtigen normaler Verschleiß oder andere Fehler die grundlegende Funktionsweise des Produkts nicht. Äußere Kratzer, Flecken oder natürliche mechanische Abnutzung stellen keinen Mangel des Produkts dar.

8. Datenblatt

Modell	SUN-5K- SG04LP3-EU	SUN-6K- SG04LP3-EU	SUN-8K- SG04LP3-EU	SUN-10K- SG04LP3-EU	SUN-12K- SG04LP3-EU
Batterie-Eingangsdaten					
Akku-Typ		Blei-	Säure oder Li	-lon	
Batteriespannungsbereich (V)			40-60V		
Max. Ladestrom(A)	120A	150A	190A	210A	240A
Max. Entladestrom(A)	120A	150A	190A	210A	240A
Ladekurve		3 Sti	ufen / Entzerr	ung	
Externer Temperatursensor			ja	-	
Ladestrategie für Li-lon-Batterie	Selbstanpassung an BMS				
PV String Eingangsdaten					
Max. DC-Eingangsleistung(W)	6500W	7800W	10400W	13000W	15600W
PV-Eingangsspannung(V)		550	0V (160V~800	V)	
MPPT-Bereich(V)			200V-650V		
Start-up Spannung(V)			160V		
PV-Eingangsstrom(A)	13A+13A	13A+13A	13A+13A	26A+13A	26A+13A
Max.PV lsc(A)	17A+17A	17A+17A	17A+17A	34A+17A	34A+17A
Anzahl der MPPT-Tracker			2		
Anzahl der Strings pro MPPT-Tracker	1+1	1+1	1+1	2+1	2+1
AC-Ausgangsdaten					
AC-Nennleistung und USV-Leistung (W)	5000	6000	8000	10000	12000
Max. AC-Ausgangsleistung (W)	5500	6600	8800	11000	13200
Spitzenleistung(off Netz)		2-fache	Nennleistung	, 10 S	
AC-Ausgangsnennstrom(A)	7.6/7.2A	9.1/8.7A	12.1/11.6A	15.2/14.5A	18.2/17.4A
Max. AC-Strom (A)	11.4/10.9A	13.6/13A	18.2/17.4A	22.7/21.7A	27.3/26.1A
Max. Kontinuierliche AC-			45A		
Durchgangsleistung(A)					
Ausgangsfrequenz und -spannung		50/60Hz; 38	30/400Vac (Dr	eiphasen)	
Netztyp			Dreiphasen		
Strom Oberschwingungsverzerrung		THD<39	% (Lineare Las	t<1.5%)	
Effizienz					
Max. Wirkungsgrad			97.60%		
Euro-Wirkungsgrad			97.00%		
MPPT-Wirkungsgrad			>99%		
Schutz					
PV-Lichtbogenfehler-Erkennung			Integriert		
PV-Eingangs-Blitzschutz			Integriert		
Anti-Islanding-Schutz			Integriert		
Schutz vor Verpolung des PV-String-			Integriert		
Eingangs					
Erkennung von			Integriert		
Isolationswiderständen					
Fehlerstrom-Uberwachungseinheit			Integriert		
Ausgang Uberstromschutz			Integriert		
Kurzschlussschutz am Ausgang			Integriert		
Ausgang Überspannungsschutz		DC	Тур II / АС Тур	o III	

Zertifizierungen und Normen				
Netz-Verordnung	VDE4105,IEC61727/62116,VDE0126,AS4777.2,CEI 0 21,EN50549-1, G98,G99,C10-11,UNE217002,NBR16149/NBR16150			
EMC/Sicherheitsverordnung	IEC/EN 62109-1,IEC/EN 62109-2,IEC/EN 61000-6-1, IEC/EN 61000-6-2,IEC/EN 61000-6-3,IEC/EN 61000-6-4			
Allgemeine Daten				
Betriebstemperatur Rande(°C)	-40~60°C, >45°C Leistungsminderung			
Kühlung	Intelligente Kühlung			
Geräusch(dB)	≤45 dB(A)			
Kommunikation mit BMS	RS485; CAN			
Gewicht(kg)	33.6			
Größe(mm)	422W×699.3H×279D			
Schutzgrad	SCHUTZART IP65			
Installationsart	Wandbefestigung			
Garantie	5 Jahre			

9. Anhang I

Definition des RJ45 Port Pins für BMS

Nr.	RS485 Pin	
1	485_B	
2	485_A	
3		
4	CAN-H	
5	CAN-L	
6	GND_485	
7	485_A	
8	485_B	

Definition des RJ45-Anschlusspins für Messgerät-485

Nr.	Meter-485 Pin	
1	METER-485_B	
2	METER-485_A	
3	COM-GND	
4		
5		
6	COM-GND	
7	METER-485_A	
8	METER-485_B	

Definition des RJ45 Port Pins des "Modbus Ports" für die Fernüberwachung

No.	Modbus port	
1	485_B	
2	485_A	
3	GND_485	
4		
5		
6	GND_485	
7	485_A	
8	485_B	

Hinweis: Bei einigen Hardware-Versionen ist dieser Anschluss nutzlos.

BMS Port

Modbus Port

12345678

- 46 -

RS232

Nr.	WIFI/RS232	
1		
2	ТХ	
3	RX	
4		
5	D-GND	
6		
7		
8		
9	12Vdc	

Dieser RS232-Port wird für den Anschluss des Wifi-Datenloggers verwendet

10. Anhang II

- 1. Abmessungen des Stromwandlers mit geteiltem Kern (CT): (mm)
- 2. Die Länge des sekundären Ausgangskabels beträgt 4 m.

Ver: 2.2, 2022-09-09

Add: No.26–30, South Yongjiang Road, Beilun, 315806, Ningbo, China

Fax: +86 (0) 574 8622 8852 E-Mail: service@deye.com.cn Web: www.deyeinverter.com

