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Inter-wheel differentials utilizing straight 
bevel gears are commonly used in the 
automotive industry to accommodate the 
relative speed differences between wheels 
during cornering. These mechanical sys-
tems have been integral to vehicle design 
for over a century, often carried over from 
one project to another. Consequently, 
the expertise and knowledge surround-
ing these systems can sometimes be lost, 
leading to challenges in design continu-
ity and innovation. This gap in knowledge 
underscores the necessity for develop-
ing effective reverse engineering meth-
ods for differential gears. Such methods 
are essential not only for recovering lost 
design information but also for conduct-
ing comprehensive analyses of competi-
tor products. The advent of advanced 3D 
scanning technology has revolutionized 
the field, providing new opportunities for 
the efficient and accessible reverse engi-
neering of complex components. This 
study aims to propose a robust reverse 
engineering methodology for straight 
bevel gears, especially for those found 
in inter-wheel differentials. By leverag-
ing 3D scans of sun and planet gears, an 
innovative approach to accurately recon-

struct the macrogeometry parameters of 
these critical mechanical systems is pro-
posed. The rebuilt geometry was used 
to create a measurement grid for flank 
topography evaluation. These measure-
ments were used to extract the contact 
ease-off, thereby revealing the complete 
macro and microgeometry of the previ-
ously unknown differential gears. 

3D Scanning
The method described in this paper is 
specifically illustrated through the analy-
sis of a planet gear from a commercial 
vehicle inter-wheel differential. It is 
assumed that the original geometrical 
parameters of this design are unavailable 
and required for further studies. The pro-
cess begins with 3D scanning of both the 
sun and planet gears. The planet gear was 
scanned twice: first while supported on 
its back face as shown in Figure 1 (left) 
and then inverted upside down. Each 
scan generated approximately 30 mil-
lion data points. These scans were sub-
sequently merged and exported in STP 
format, resulting in a refined dataset 
containing over 40,000 points. The Car-
tesian coordinates of each node defin-

ing the 3D shape of the part were then 
extracted, as shown in Figure 1 (right).

Basic Parameters
In parallel with the first step, the tooth 
count of the sun and planet gears, along 
with their respective mounting distances, 
can be determined through basic mea-
surement and evaluation. All gear-related 
terms and symbols used in the following 
sections comply with ISO 1122-1 (Ref.1). 
The tooth count of both members is 
essential for determining the pitch angle, 
which is defined by Equation 1.
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Where:
d1   is the planet gear pitch angle
z1   is the number of teeth of the 

planet gear 
z2   is the number of teeth of the 

sun gear 

The mounting distances of the planet 
gears tB1 can be obtained from the dif-
ferential housing by measuring the dis-
tance between the contact surfaces of two 
opposite planet gears using a caliper. If 
a friction washer is present between the 

Figure 1—3D scanning of planet gear (left) and point extract (right).
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planet gear’s back face and the differen-
tial nest, its thickness should be included 
when estimating the mounting distance, 
as illustrated in Figure 2. 

RZ Projection
Once the basic geometry has been 
established, the Cartesian coordinates 
obtained from 3D scanning are projected 
onto the RZ plane. The objective of this 
step is to determine the face angle (da1) 
and root angle (df1) along with the face 
apex beyond crossing point (tzF1) and 
root apex beyond crossing point (tzR1) of 
the scanned planet gear. 

For that purpose, the highest and low-
est points along the gear flank—defining 
the face and root cones, respectively—
were identified and isolated. These sets 
of points should form straight, continu-
ous lines. Any points associated with root 
reinforcement shapes, blank outer radius, 
or chamfers were visually identified and 
removed from their respective sets. In 
Figure 3, root points are highlighted in 
blue, while face points are marked in 
red. A linear equation was fitted through 
both sets of points. For the face points, 
an equation in the form 

Z a R ba a1 1)= +
(2)

was obtained. From this equation, the 
face angle (da1) and face apex beyond 
crossing point (tzF1) can be determined 
using Equations 3 and 4:
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A negative value indicates that 
tzF1<tB1, as illustrated in Figure 3. A sim-
ilar process is applied to the root points 
to estimate the root angle (df1) and root 
apex beyond crossing point (tzR1).

Figure 2—Differential housing and mounting 
distances.

At this stage, the pitch angle d1 pre-
viously defined can also be plotted on 
the RZ graph, given that the pitch line 
intersects the crossing point of RZ 
coordinates (0, tB1). The pinion face 
width (b1) was estimated as the absolute 
distance between the first and last point 
of the projected profile that intersects 
the pitch line. 

Finally, a cone distance (Rm1) was 
arbitrarily defined by selecting a point 
along the pitch line and within the 
limits of the previously defined face 
width. This reference point will be 
used in the next steps to establish a 
transverse section of the gear. Within 
this section, the meshing of a straight 
bevel gear is considered equivalent to 
the meshing of a cylindrical spur gear 
with virtual geometric parameters. 
This transverse section will be used to 
estimate the tooth thickness, pressure 
angle and tool tip radius. 

Transverse Section 
and Tooth Thickness

From the 3D-scanned dataset, a single 
tooth was isolated. A plane perpendicu-
lar to the pitch line, passing through the 
cone distance Rm1 was defined and desig-
nated as plane A-A in XZ and YZ pro-

jections, as shown in Figure 4 (left). The 
points whose distance from the plane 
was less than a predefined limit were 
identified and projected onto the latter. 
Simultaneously, the pitch points (P) on 
the left and right flanks were identified 
as the intersection of the transverse sec-
tion points with the pitch line, illustrated 
with a dotted line in Figure 4 (top left). 
These points were then shifted in the x 
direction to ensure that both pitch points 
were equidistant from the y-axis. It can 
be noted that the distribution of the 
transverse section points closely resem-
bles that of a cylindrical spur gear with 
an involute profile, exhibiting the follow-
ing characteristics:
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Where:
met   is the transverse module
z’1   is the virtual number of teeth of 

the pinion
de1   is the pitch diameter of the 

virtual cylindrical gear

Figure 3—RZ projection of planet gear points.
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Since this pitch diameter should 
intersect the two previously identi-
fied pitch points, the transverse section 
points were shifted in the y direction so 
that these points align with de1. From 
this, the tooth thickness half-angle (}1) 
was calculated based on the adjusted 
pitch point coordinates. Finally, the 
mean normal circular tooth thickness 
(smn1) was determined using:

s dmn e1 1 1) }=
(8)

Transverse Section 
and Pressure Angle

The normal pressure angle (an) of the 
virtual cylindrical involute gear is defined 
as the angle formed between a radial line 

of the pitch circle and the tangent line 
to the profile at the pitch point (Ref. 2). 
It can be estimated from the transverse 
section by following the steps illustrated 
in Figure 5 and described below.
• Step 1: A circle centered at the pre-

viously identified pitch point (P) on 
one of the f lanks was defined, with 
a search radius (rs). The points of the 
transverse section located within this 
circle were identified.

• Step 2: A circle was fitted through 
the identified set of points to esti-
mate the local profile radius of cur-
vature at the pitch point. The coor-
dinates of the center of this fitted 
circle, denoted as XC, were retrieved. 

• Step 3: A line passing through the 
pitch point and the fitted circle cen-
ter XC was drawn, establishing the 

normal to the gear surface. The per-
pendicular to this normal, also pass-
ing through the pitch point, provides 
the tangent line to the profile at the 
pitch point.

• Step 4: A radial line of the pitch 
circle was defined as passing through 
the center of the gear OC (0,0) and 
the pitch point.

• Step 5: The normal pressure angle 
(an) was estimated by calculating 
the angle between the tangent line 
(from Step 3) and the radial line 
(from Step 4).
It should be noted that these results 

may vary depending on the initial 
choice made for the search radius (rs). 
In this study, consistent and repeatable 
results were obtained with rs ranging 
from 15–25 percent of the tooth height.

Figure 4—Transverse section and pitch point alignment.

Figure 5—Estimation of normal pressure angle.
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Profile Shift, Addendum and Dedendum 
Calculation

Once the mean normal circular tooth thickness (smn1) and normal pressure angle (an) 
have been determined, the profile shift coefficient (xhm1) can be obtained using the fol-
lowing equation:

. tans m xm0 5 2mn et hm net1 1) ) ) ) )r a= + ^ h
(9)

The addendum coefficient (hae1) and dedendum coefficient (hfe1) of the straight 
bevel planet gear at the cone distance Rm1 be determined using the face angle (da1), 
root angle (df1), face apex beyond crossing point (tzF1) and root apex beyond crossing 
point (tzR1) as defined in the previous section “RZ Projection”: 
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Where
dfe1   is the root diameter of the planet gear
dae1   is the tip diameter of the planet gear

These diameters are derived from the equivalent spur gear tip diameter (d’a1) and 
root diameter (d’f1) as follows:

cosd dfe f1 1 1) d= l ^ h
(12)

cosd dae a1 1 1) d= l ^ h
(13)

The equivalent spur gear diameters are given by:

d m zet1 1)=l l
(14)

d d x h m2f hm f et1 1 1 1) )= + -l l l^ h
(15)

d d x h m2a hm a et1 1 1 1) )= + -l l l^ h
(16)

Where:
h’a1   is the addendum coefficient of the equivalent spur gear
h’f1   is the dedendum coefficient of the equivalent spur gear

These coefficients can be expressed in terms of profile shift coefficient (xhm1):
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By substituting Equations 17 and 18 back into Equations 10 and 11, the values of 
hae1 and hfe1 can be isolated and calculated. 

Transverse Section and Tool Tip Radius
The edge radius of the hobbing tool (ra0) has been shown to be proportional to the mini-
mum radius of curvature (tf) in the generated root fillet (Ref. 3). This minimum radius 
occurs at the beginning of the trochoid, at a point where the profile is tangent to the root 
diameter. At this point, the relationship between these parameters is expressed as follows:
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Since the pitch diameter (de1) and 
dedendum coefficient of equivalent spur 
gear (h’f1) were determined in the sec-
tion “Profile Shift, Addendum and 
Dedendum Calculation,” the only 
unknown in this equation required to 
determine ra0 is the radius of curvature 
(tf). To determine the latest, the trans-
verse section previously established was 
analyzed. The points of the root fillet 
close to the root diameter were isolated 
(highlighted in red in Figure 6). A circle 
was then fitted through these points, 
allowing for an estimation of tf as illus-
trated in Figure 6.

The edge radius of the hobbing tool 
(ra0) was isolated from Equation 19. To 
reduce the uncertainty of the proposed 
method, this operation was repeated 
for the left root fillet. The mean of both 
obtained values was considered as the 
final value for ra0.

Numerical Data and 
Overall Check

Table 1 below presents the measured 
results obtained from the planet gear ana-
lyzed in this study, following the method-
ology described in previous sections. For 
confidentiality reasons, only the pinion 
data are provided in this article. However, 
the analysis was thoroughly conducted on 
both the sun and planet gears. 

Using the measured data from Table 
1, the remaining geometrical parameters 
were computed using the equations pro-
vided in this study. Results are provided 
in Table 2.

A simple approach to validate the 
identified macrogeometry is to com-
pute, in a transverse section defined by 
its cone distance Rm all the geometrical 

Figure 6—Estimation of the radius of curva-
ture (tf) in the generated root fillet.
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parameters of the equivalent cylindrical 
spur gear. From there, using equations 
for involute profile and trochoidal root, 
one can compare the theoretical tooth 
shape with the physical points of the 
scanned dataset at the defined section. 
This comparison is illustrated in Figure 
7, where the theoretical tooth shape is 
represented as a dark continuous line, 
while the physical scanned points appear 
as blue scattered points. The comparison 
is performed at two different cone dis-
tances—close to the toe and heel of the 
planet gear—both different from the one 
at which the analysis was conducted. 

At this stage, the complete macroge-
ometry of the differential has been identi-
fied. These data are sufficient to establish 
a complete gear datasheet and run basic 
strength calculations, including surface 
durability and tooth root strength as per 
ISO 10300 (Ref. 4). However, an addi-
tional step could be achieved by over-
coming the challenge of accurately recon-
structing the microgeometry of both gears.

Topographic 
Measurement and 
Contact Ease-Off

In this final section, the gear blank shape was 
extracted from an RZ projection, capturing 
parameters such as the back cone angle, 
root reinforcement and tip radii, as shown 
in Figure 8 (left). Using this data alongside 
the previously determined macrogeometry, 
an initial approximation of the tooth surface 
microgeometry was established. 

To refine this approximation, a 15 x 
15 measurement grid was created, pre-
cisely following the gear contour, as 
depicted in Figure 8 (right). Each grid 
point contains x,y,z coordinates and the 
normal to the tooth surface. 

Description Symbol Unit Value

Number of teeth (pinion) z1 - 12

Number of teeth (gear) z2 - 16

Mounting distance tB1 mm 81

Cone distance Rm1 mm 88

Face width b1 mm 27.8

face angle da1 ° 43.34

root angle df1 ° 30.46

face apex beyond 
crossing point

tzF1 mm -2.08

root apex beyond 
crossing point

tzR1 mm -0.14

Tooth thickness half 
angle

}1 ° 6.21

Normal pressure angle an ° 27.0

Minimum radius of 
curvature at root fillet

tf mm 2.48

Table 1—Measured numerical data from physical parts using the proposed methodology.

Description Symbol Unit Value

Pitch angle d1 ° 36.87

Equivalent pitch 
diameter

de1 mm 105.6

Mean normal circular 
tooth thickness

smn1 mm 14.32

Transverse module met mm 8.8

Virtual number of teeth 
of equivalent spur gear

z’1 - 15

Profile shift coefficient xhm1 - 0.055

Addendum coefficient hae1 - 8.543

Dedendum coefficient hfe1 - 9.958

Edge radius of the tool ra0 mm 1.232

Table 2—Numerical data calculated using provided equations.

Figure 7—Theoretical tooth shape vs. transverse section points. Figure 8—Blank contour extract, CMM grid and contact ease-off.
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The planet gear analyzed in this study 
was then placed on a coordinate mea-
suring machine (CMM) to measure the 
exact surface deviation at each point in 
the normal direction, as presented in 
Figure 9 (left). The CMM inspection 
report (Figure 9, right) revealed reason-
able amplitudes of the surface devia-
tion, confirming the validity of the initial 
microgeometry assumption. The final 
microgeometry was determined by com-
bining the initial estimation with the 
measured deviations.

Applying the same method to the side 
gear enables the determination of the 
geometric ease-off. The extracted ease-
off topography is represented on the 
pinion in Figure 10 (left) as the initial 
gap (in µm) between mating gears. From 
this, standard finite element (FE)-based 
bevel gear calculation can be performed, 
enabling the accurate evaluation of dura-
bility under load, contact patterns, trans-
mission errors and overall performance. 
An example is provided in Figure 10 
(right), illustrating the simulated no-load 
contact pattern on the planet gear.

Conclusion
This study presented a structured meth-
odology for reverse-engineering the 
macro and microgeometry of a straight 

bevel gear, relying on 3D scanning, 
mathematical modelling and topo-
graphic measurement. Through a step-
by-step approach, key geometrical 
parameters—including tooth thickness, 
pressure angle, profile shift and tool tip 
radius—were identified and validated 
against physical measurements. The final 
step relied on CMM for topographic 
evaluation to identify the microgeom-
etry and assess contact ease-off, enabling 
further numerical simulations for per-
formance evaluation. The extracted data 
can serve as a foundation for durability 
assessments and design optimization, 
contributing to the accurate evaluation 
and enhancement of gear performance.
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Figure 9—CMM evaluation and inspection report.

Figure 10—Extracted ease-off (gap in µm) and simulated no-load contact pattern.
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