Low Vibration Design on

A Helical Gear Pair
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elical gear pairs with narrow face width
can be theoretically classified into three
categories over the contact ratio domain
whose abscissa is the transverse contact
ratio and whose ordinate is the overlap contact
ratio. There is a direct relation between vibration
magnitude and shaft parallelism deviation. To clar-
ify the effect of the tooth deviation types on the
vibration behavior of helical gear pairs, perfor-
mance diagrams on vibration are introduced. The
acceleration levels of gear pairs are shown by con-
tour lines on the contact ratio domain. Finally, the
performance of gears with bias-in and bias-out
modifications is discussed considering the effect of
the shaft parallelism deviation with use of the
developed simulator on a helical gear unit. It
becomes clear that there is an asymmetrical feature
on the relation between the vibration magnitude of
a gear pair and the direction of each deviation.
The Helix Angle and the Transmission
Behaviors of a Driven Gear. The author numeri-
cally solved the deflections of a thick plate with
finite width (Ref. 15) and a rack shaped cantilever
(Ref. 16) under a concentrated load (as shown by
Olsson in Ref. 1) by using the finite difference
method. Furthermore, the load distribution along
the line of contact and the compliance of a helical
gear tooth pair from the start of meshing to the
end of meshing have been revealed (Ref. 17-19).
When the face width is constant, i.e. three
times the whole depth, the relation between the
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Fig. 1—The behaviors of the driven gear and the helix angle with b/h = 3.0.
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helix angle and the calculated behaviors of the
driven gear under loading is shown in Figure 1.
These results are analyzed assuming that the nor-
mal pitch P_, normalized with the whole depth, is
0.6. Then the whole contact ratio is calculated for
each helix angle. The overlap ratio is calculated
from this whole contact ratio and the assumption
that the transverse contact ratio is £=1.4. This
contact ratio was calculated for a spur gear pair
when the normal pitch P, is 0.6

When the helix angle is 14° (Figurela), the
sum of the transverse and overlap contact ratio is
smaller than 2. Therefore, this pair of gears trans-
mits load alternately with one pair and with two
pairs of mating teeth. The load sharing ratio for
this pair of gears varies more smoothly than that
of spur gears. But sometimes knobs appear on
this curve when the meshing condition transits
from one pair meshing to two pairs meshing.

When the helix angle is 20° or 30° (as shown in
Figures 1c and 1d), the total contact ratio is over 2.
The gears alternately transmit load with two and
three mating pairs of gear teeth, the load sharing ratio
varying smoothly. The behavior of the driven gear, or
the transmission error, also varies smoothly.
Especially when the helix angle is 30°, the overlap
contact ratio is over 1.0 and the behavior changes
very smoothly with little fluctuation as shown.

Three Categories of a parallel axes gear pair.
Theoretical and experimental studies on static
meshing behavior under load have proven that a
power transmission parallel gear pair can be clas-
sified into three categories on the contact ratio
domain based on its facility for reducing vibra-
tion as shown Figure 2.

Vibration Magnitude and
Shaft Parallelism

The relation between vibration and parallelism
of axes was investigated for three kinds of helical
gear pairs classified into three categories. Two
kinds of shaft misalignment were implemented,
in-plane and out-of-plane deviation. For realizing
the out-of-plane or the in-plane parallelism, the
pedestal of the driving gear shaft was tipped in
the vertical plane or in the horizontal plane,




respectively. The vibration was measured by two
accelerometers attached directly to the driven
gear blank surface.

Dimensions of test gears and test apparatus.
Test gear pairs were designed to belong to each
category classified over the contact ratio domain,
and are named H1, H2, H3 and H4 as shown in
Figure 2. Dimensions of each gear pair are dis-
played in Table I. All test gears were hardened
about Hre55, and finished by the MAAG 30-BC
Gear Grinder. Tooth profile and tooth tracss are
made with as little deviations as possible.

Shaft misalignment set up. Shaft misalignment
was created by placing several thickness gages on
the surface of the base plate or on its side surface
for the out-of-plane or in-plane deviation (Fig. 3).
Thickness gages of 0.1-0.4 mm were used and the
angular deviations realized were about 0.5x107
rad and 1.1x103 rad. The amount of the cut-of-
plane and the in-plane deviation was measured
with two dial indicators. Gear shaft misalignment
was introduced for both the leading and trailing
side bearings.

Influence of the out-of-plane deviation. The
relation between rotational vibration response vs.
speed and out-of-plane deviation for the gear pair
H3 is shown in Figure 4. With proper alignment
(as indicated by “no error™), acceleration increas-
es with the speed. Being observed in the cases of
the gear pairs H1 and H2, the peak cannot be rec-
ognized for these gear pairs without deviation.

When 13um edge to edge deviation exists at
the leading side, the peak appears at about 2700
rpm, which is ascribed to the second harmonic
resonance. As the error increases to 29um, accel-
eration increases over the whole speed range and
the peak occurrence shifts towards a lower speed.
However, when an error of 14um exists on the
trailing side, there is no remarkable increase in
vibration. When the error increases to 20um,
peaks appear at the higher harmonic resonance,
and the acceleration levels becomes high.

Influence of the in-plane deviation. For the
gear pair H3, the relation between the rotational
vibration response and the in-plane deviation is
shown in Figure 5. In the case of an error on the
trailing side, the vibration of this gear pair is not
influenced by the error. With an error on the lead-
ing side, the acceleration level becomes high, and
higher harmonic resonance peaks appear.
However, the vibration behavior of the pair is not
as influenced as with the out-of-plane deviation.

Performance Diagrams on Vibration

To clarify the influence of tooth deviations on

vibration, a simulator for the rotational vibration
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Fig. 2—Classification of parallel pairs.

Table 1—Dimensions of test gear pairs.

Gear pair HE | W2 | M3 H4
Normal module p 33 +
Number of teeth | 30 | 29
Helix angle (deg) iy 30 [ s
Pressure angle (deg) : 20
Face width (mm) 0 [ 20 [ 2 28
Addendum modification coefficient -0.17 § 8
Transverse contact ratio 1.4 157
Overlap contact ratio | oas | oo | 114 | oss
In-plane Out-of-plane

0 % 5x10%, 1% 10 md

Fig. 3—Shaft misalignment setup.
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Fig. 5—The relation between the rotational vibration and rotational speed
(H3) (Influence of the in-plane deviation).
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Fig. 6—Flow chart of the developed simulator on rotational vibration of a
helical pair.
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Where 0 is the relative displacement along the
line of action, M is the equivalent inertial mass of
the gear pair on the line of action, D is the damp-
ing coefficient, K (t,8) is the mesh stiffness of the
gear pair; W is the static transmitting load, and
F(,8) is the exciting force caused by profile mod-
ification or deviations &(Y).

Dimensionless acceleration. The motion
equation of a pair expressed in Eq. (1) can be
transformed into the non dimensional form,

20 ety x=146(t0)"  (2)

Where k(T,)=K,(t.8)/K, ., is the dimensionless
stiffness of a helical gear pair, x=0/8_ is the
dimensionless relative displacement, §, = W/K is
the mean of the relative displacement,
o(T,x)=F(1,8)/W is the dimensionless exciting
function, @, =,K(z)/M is the natural frequency of
a pair, and T=f~@, is dimensionless time. When the
gear speed is represented by the parameter f/f
(hereafter referred to as only “speed”), the nondi-
mensional vibrational equation (Eq. 2) is solved
by the use of equations shown in Figure 6.
Furthermore the dimensionless acceleration §

is expressed as follows,

X = S/(W/M). (3)

The value of the dimensionless acceleration indi-

cates the performance of the pair related to vibration

in RMS value of acceleration. This value is hereafter

called “the vibration level,” which is obtained

uniquely at each point on the contact ratio domain.
The Developed Simulator

For solving the rotational vibration of a helical
gear pair with narrow face width, a simulator was
developed whose flow chart is expressed in Figure 6.
It was developed especially for calculating the influ-
ence of tooth surface deviation. The input values
required are only the dimensions of a helical gear
pair, the distribution of deviations over the tooth face
and the driving speed.

The simulator solves the differential equation
with the Runge-Kutta-Gill method and outputs
the vibration of the pair as either a wave form as
shown in Figure 7, or a root-mean-square value of
acceleration as shown in Figure 8.

Verification by Experiments. Calculated and
experimental results under the 98 Nm of torque,
at rotational speeds from 800 rpm to 2000 rpm,
are shown in Figure 7. The gear pair has a normal
module of 3.5, 30 teeth each, 20° pressure angle,
10 mm face width, and a 30° helix angle with a
10um convex slope deviation at tip-side.




Agreement between the calculated results from
the simulator and experimental results is good
about the waveform, especially the change in the
numbers of vibration cycles within one tooth
meshing period 7, and about the behavior of
amplitude as the rotational speed is increased.

The relation between vibration amplitude in
RMS value and rotation speed is shown in Figure
8. This was developed using a good quality pair
with deviations under 3um, and whose dimen-
sions are the same as those in Figure 7 except for
the 25mm face width.

Nature of dimensionless stiffness. Figare 9
shows the stiffness behaviors along the line of
action K; (t.8) of two helical pairs, (a) and (b). These
are plotted at the same position on the contac: ratio
domain (black dot in the lower left figure).

Apparently stiffness behavior is different, espe-
cially with respect to the mean value of stifness
K, can: However, the behavior of the dimensionless
stiffness x(1,%), in which the actual stiffness is
divided by the mean value of stiffness, is the same
as shown Figure 9(c) from the viewpoint of how to
synthesize the performance of helical gear pairs
because the differences among the first order
Fourier coefficients of each dimensionless stiffness
are within 10 percent deviation on each pair
belonging at the identical point on the contact ratio
domain. The differences of the higher order Fourier
coefficients are of the same level amplitude, and
their values are smaller by one third than coeffi-
cients of the first.

Performance diagrams on vibration of helical
gears. At each operating speed and under each
deviation condition, the vibration levels were
solved numerically by the simulator at 80 points
in the contact ratio domain, where the transverse
contact ratio (abscissa) was set at 8 points from
1.0 to 2.0 and the overlap ratio (ordinate) was at
10 points from 0.2 to 2.3. Consequently, the
solved vibration levels were expressed as coatour
lines on the contact ratio domain.

Accounted deviations and modifications.
Performance diagrams were produced on the
seven kinds of pairs: the no error pair, the pair
with crowned tooth face, and the pairs having,
respectively, pressure angle (profile slope devia-
tion in ISO), convex profile, concave profile, lead
and pitch deviations, which are similar in manu-
facturing and assembling gear units. The perfor-
mance diagrams calculated under the condition
that the relative deviations between meshing dri-
ving and driven teeth are gathered apparently to
only driven gear teeth, which have ideally the
same figure and the same amount of deviatiors for

CALCULATION

EXPERIMENT

m/s? 800 rpm m/s?

800 rpm

Fig. 7—Verification by experiments on the changing speed.

every tooth in the gear. Therefore all teeth of the
driving gear have ideally no error for calculation.

Performance diagrams on a non-error pair.
The produced performance diagrams on a pair
having no error at each speed f, /f, changing from
a low value of 0.21 to a high value 0.98. The inter-
val of vibration level between adjacent contour
lines is a 0.025 vibration level. Generally, at each
speed the vibration level becomes small accord-
ing to an increase in overlap contact ratio, except
for the 2™ resonance speed (f,/f, = 0.49) and the
high speed region.

At low speed (f,/f,< 0.35). There is no differ-
ence in the vibration level of pairs belonging in
this area by the scale 0.025. Clearly, choosing an
overlap ratio over 1.0 lowers the vibration of a
helical gear pair.

At middle speed (0.35 < f./f,< 0.7). In the area
£3<1.0, the vibration level decreases when the trans-
verse contact ratio € =2.0. The contour lines trace
along the band which is 45 degrees to each coordi-
nate and where the total contact ratio €, is 2.1. When
designing a low vibration helical gear pair, the pair
should be categorized into the upper side of this
bank. On the middle speed, the vibration of a helical
gear pair can be reduced by setting its total ratio over
2.1. The diagram of f,/f,= 0.49 showed complicat-
ed and dense contour lines because f,/f,= 0.49 is
near the 2™ harmonic resonance speed.
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At high speed (0.7<f_/f,<1.0). In the area
eﬂ<l.0. the vibration level becomes large, espe-
cially around a transverse contact ratio of
€,=1.5~1.6. It then decreases around € =2.0.

In the area of €g >1.0, where vibration is weak
at low and middle speeds, the vibration strength-
ens in the area of &; =1.3 and &, = 1.5. Moreover,
a strong vibration area extends around the total
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Torgue 147 Nm no error
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Fig. 8—Verification by experiments on rotational vibration (rms) vs. speed.
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Fig. 9—The nature of stiffness of the pairs having the same contact ratio.
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contact ratio €, = 2.9~3.0. This indicates that the
vibration of a pair having no error is determined
only by the behavior of the stiffness of a pair in
Eq. 2. Therefore, the performance diagram at
f,/f,=0.91 is very similar to the equi-amplitude
contours of first order component of the Fourier
series of stiffness. It is reasonable that the contour
lines become dense and high at f/f =0.98
because it is near to the resonance speed.

Performance diagrams on a pair having each
kind of deviation. The performance diagrams on
vibration were drawn at the speeds f/f = 0.63 and
f/f,=0.98. Each diagram was calculated with every
tooth on the driven gear having the same deviation,
and the nondimensional deviation was 1.0. The max-
imum deviation is set to be the same as the mean
deformation produced by the transmitting load.

At middle speed (f /f, = 0.63). In the diagram
on pitch error (single pitch deviation in ISO), the
contour lines become parallel to the direction, 45
degrees to each coordinate, at which the total con-
tact ratio is constant. The vibration does not
increase much in the area of EB>1‘O' almost
regardless of the deviation. This feature is under-
stood because the pitch deviation is assumed to be
the same on every other tooth, so the load is
always transmitted by the projecting area of every
other tooth, therefore, apparently having little
effect of pitch deviation. Increasing the total con-
tact ratio of a pair weakens the influence of pitch
deviation on increasing vibration.

At high speed (f_/f,=0.98). In the high speed
diagram, the contour lines generally become
denser than those at the middle speed. Therefore,
the vibration of a pair increases over all the area in
the contact ratio domain.

On the pair having a convex profile, the vibra-
tion increases in the area of € <1.4. On the area of
€,~1.4~1.6 and €y >1.2, the vibration level
decreases because the convex profile works as a
profile modification.

On the pair having a concave profile, over the
entire contact ratio domain, the vibration level
increases in comparison with the pair with no
error. It is also especially large in the area (g,
Eﬂ)=( 1.5, 1.5), where the vibration of the pair hav-
ing the other deviations is small.

On the pair having a lead error (helix deviation
in ISO), the vibration level increases around € =
1.5 and also in several regions over Eﬁ>l .0 where
the vibration is usually low. The nature is different
from one of a pressure angle error, although the lead
deviation and pressure angle deviation look the
same as the projecting deviation at the beginning of
the mesh process. However, they work differently

e



along the line of contact of a helical gear and cause
vibration.

When the tooth surface is crowned, vibration
in the range of £;21.0 decreases in comparison
with the pair with no error.

The simulator can depict vibration levels and
waveform behavior precisely. The performance dia-
grams depicted the influence of deviation and oper-
ating speed on the vibration level of a pair in the
contact ratio domain. Using these diagrams, a
designer can select the best dimensions to lower the
vibration of a newly designed gear to the lowest
vibration or influence area by the use of deviations.
Also, when an engineer has to improve a noisy gear,
he can choose the most effective improvement by
crossing to the contour lines of the diagrams.

Bias Modification

Finally, bias-in and bias-out modifications are
discussed as they relate to shaft parallelism devia-
tion with the use of the simulator on a helical gear
unit (Ref. 23).

Among gear vibrations, rotational vibration is
the most important. It can be approximated with a
single-degree-of-freedom model. However, the
effect of the thrust force from the helix anglz of a
helical gear complicates the vibration of a gear
unit. To further reduce vibration, it is important to
reveal the actual modal behaviors of the gear
vibrations in every direction as well as the vibra-
tions of the shafts.

The vibration of a helical gear unit as shown in
Figure 10 with various gear ratios has been investi-
gated. The dynamic response of transverse, rotation-
al, tilting and axial vibrations of helical gears are
measured by acceleration pick-ups mounted on the
gear blank. Modal behavior is interpreted based on a
modulation scheme due to shaft rotation. The modes
of shafts and gears are measured precisely with a
laser Doppler velocimeter. Then the simulation on a
dynamic model, including transverse, rotational, tilt-
ing, and axial vibrations, is developed.

Modal Behavior. The locus of the transverse
motion of the gears and gear shafts, measured with a
laser Doppler velocimeter at resonance, are presented
as qand Q in Figure 11. Circle marks are the points of
instantaneous displacement when the rotation of the
gear is such that the separation of the gears is the
greatest along the line of action. Triangles are the
spots of the opposite condition. Arrows indicate the
direction of motion. Additionally, tilting motion of the
gear is presented through the differentiation of two
measurements at both shoulders (U and V in Figure
13) of the gear body.

Regardless of the ratio, the shaft of the bigger
gear vibrates with an S-shaped mode. Each part

whirls along a thin, elliptic locus with the mesh fre-
quency. The major axis of this ellipse is not parallel
to the line of action. At the bearing position, where
the motion should be interpolated from the results of
both sides, a low amplitude vibration exists, sug-
gesting that the bearing positions are not con-
strained as simply supported pivots. The modal
behavior is also unique to an individual gear-shaft-
bearing assembly regardless of driving/driven con-
ditions. Displacement of the pinion shaft at the slip
ring side bearing is a little larger than at other bear-
ing positions. This might be an individual feature of
each bearing. Although the shafts are vibrating in an
interesting manner, the gear itself is supposed to
move in the direction of the line of action if we
assume the vibration of the gear center by interpo-
lating with outer vibration.

The simulator of 12-degree-of-freedom. To pre-
dict the vibration behaviors of helical gears as
shown in Figure 14, the author proposes a 12-
degree-of-freedom dynamic model that includes
rotational, transverse, tilting, and axial motions. A
gear is assumed to be a rigid body which can be
vibrating in six directions in terms of equivalent
stiffness and effective masses including the dynam-
ic properties of gear, shafts and bearings. Tooth
meshing springs of two coupled gears are modeled
as two parallel springs that vary temporally with a
certain phase relationship due to the helix angle.

Vibration analysis. Figure 12 shows that trans-
verse vibration can be expressed by dynamic
behaviors in the x and y directions. Rotational
vibration can be expressed in the 6. direction.

q:Increasing 4:3, 2460 Hz

0.5 jm

Fig. 11—Modal representation of the gear system by means of laser Doppler
measurement. Gear ratio 3:4.
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Fig. 12—Vibration model of helical gears.
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Fig. 13—The verification of the developed 12-DOF vibration simulator of a
helical gear system by experiment modes under increasing 4:3, about 2460 Hz.
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Fig. 14—Bias-out and Bias-in modification.
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Tilting vibration can be expressed in the 6, and 6,
directions, and axial vibration can be expressed in
the z direction. In each direction, the equivalent
stiffness and effective mass are determined by the
gear, shaft, and bearings.

Angular displacement in the rotational direc-
tion 6, is expressed in terms of tangential dis-
placement along the base circle as w = r.6, .
Angular displacements in the tilting directions 6,
and 6, are also expressed along the base circle as
u= rx'(ijr , v =16 The equations of motion can
be expressed in the matrix equation

[m](8)+{D)(8)+[k}(8)=(F) @)
Where { &} is a vector of displacements as
(8} = { x 32,1 W, ‘2.—"132.“1"1“’sz (&)

[m] is a mass matrix, [D] is a damping matrix, and
[k] is a stiffness matrix.

To verify the simulator with the use of the pro-
posed formulation, experiments were performed
for different ratios. The results agreed with the
calculations (see Figure 13). The mode at reso-
nance speed was found to be f, = 2460 Hz when
the gear ratio is 4:3.

The performance of a bias-modified helical
gear pair. To decrease vibration, bias modification is
often applied to the tooth surface. There are two
methods in bias modification, bias-in and bias-out
(see Figure 14). It is not clear which modification is
better.

Using the vibration simulator of a 12-degree-of-
freedom helical gear unit, the relationship between
the performance of vibration level and misalignment
is discussed on the bias-in and the bias-out modified
helical gear pairs. These pairs have a high total con-
tact ratio € = 3.81 (usually used in automobile trans-
missions) to realize low vibration level. The gear
datais: z, and z,=52, m, =20, 0=20" and B, = 30°,
face width 30 mm and load 133 N/mm.

Misalignment is defined as positive when the
axis inclines to the leading side bearing. On the
bias-out modification with misalignment from
-20p to 10um, amplitide factor contour maps
have been developed in which the abscissa is the
dimensionless modification length b,/ p, and the
ordinate is the bias modification h, [um] (see
Figure 14).

The contour lines in the maps show a ratio of
rotational vibration to that of a non-modified heli-
cal gear pair at the resonance speed. The influence
of the amount of bias-out modification and modi-
fication length on vibration can be obtained using




the contour lines on each amplitude factor contour

map. The influence of misalignment on vibration

is realized by comparing the maps to each other.
Conclusion

The proposed classification of a parallel gear
pair and contact ratio domain are verified to be
useful in the design of a quiet gear pair.

Our research has shown that there is an asym-
metrical relationship between vibration magni-
tude and the direction of each deviation (see
Figures 4 and 5). For further noise reduction, the
effects of shaft, bearing and gear-box on vibration
are of great importance.

Finally, there is no new knowledge on how to
design a quiet parallel gear. However, it is clear
that surface deviation, as well as the direction of
that deviation, can affect the vibration level of a
gear pair. Gear engineers should see tha: their
products turn in the right direction. They are very
similar men who walk step by step carefully the
narrow ridge between high mountains. £}
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