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Double-flank composite inspection (DFCI) is a valuable tech-
nique that can functionally provide quality control results of test 
gears quickly and easily during manufacturing. However, the 
successful use of DFCI requires careful planning from product 

design, through master gear design and gage control methods in 
order to achieve the desired result in an application. This docu-
ment explains the practical considerations in the use of double-
flank testing for the manufacturing control of spur, helical and 

crossed-axis helical gearing.

Description of Double-Flank Composite 
Inspection
Double-flank testing is a technique that has 
been used in the gear industry to identify poten-
tial manufacturing defects in the design intent 
of the gear. It is a practical, fast and effective 
screening tool that can identify when the gear 
manufacturing process has deviated from an 
ideal condition that could result in a loss of 
conjugate action, a change in backlash, or an 
unwanted noise in a gear mesh.

The test itself involves an apparatus of gen-
eral layout as shown in Figure 1 and of actual 
configuration as shown in Figure 2. A master 
gear of known precision is mounted on a fixed 
base with only rotational freedom. The test gear 
is mounted on a floating slide mechanism that 
allows rotation of the test gear and movement 
along an axis between the line of centers of 
the master and test gear. A spring (with a pre-
set force) pushes the floating slide, resulting in 
zero-backlash, double-flank contact (i.e., on 
both left and right flanks) on both the test gear 
and the master gear.

As the master gear is rotated (by hand or by 
motor), the test gear follows. Involute theory 
dictates that perfectly formed teeth will prevent 
any movement of the floating slide between the 
line-of-centers. However, since no gear can be 
manufactured in absolutely perfect condition, 

Part I of this paper describes the theory behind double-flank composite inspection, detailing the apparatus used, the 
various measurements that can be achieved using it, the calculations involved and their interpretation. Part II, which 
will appear in the next issue, includes a discussion of the practical application of double-flank composite inspection, 
especially for large-volume operations. Part II covers statistical techniques that can be used in conjunction with 
double-flank composite inspection, as well as an in-depth analysis of gage R&R for this technique.

Figure 1  General arrangement of a double-flank composite tester.

Figure 2  An actual double-flank composite tester in tight mesh 
(courtesy of Web Gear Services Ltd.).
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there will always be some movement of the floating slide as the 
gears rotate. The magnitude of this movement is measured with 
either a mechanical indicator or electronic detector that contacts 
the slide mechanism. If the measuring instrument is calibrated 
to an actual distance reading between the centers of the gears, 
then an actual tight mesh center distance result can be obtained.

In order to maintain accuracy in the measurement, intimate 
double-flank contact must be maintained at all times. Therefore 
the selection of the pre-set spring force and the speed-of-rota-
tion of the gears should be given careful consideration to limit 
measurement errors.

The pre-set force may need to be selected specifically for the 
test gear’s design, taking into account the material’s ability to 
resist deformation under load (i.e., plastic gears), where a large 
pre-set force may distort the gear into conformity. In addition, if 
there is excessive resistance coming from the mounting of either 
the master gear on its mandrel, or, more commonly, of the test 
gear on its mandrel, then a low, pre-set spring force will result in 
separation of the two gears out of double-flank contact, creating 
an error in the measured values. The correct pre-set spring force 
is the minimum force needed to maintain continuous, double-
flank contact without distorting the test gear.

The speed of rotation of the gears should be selected by taking 
into account the natural response of the mechanical and electri-
cal (if so equipped) elements of the tester. It is generally recom-
mended that at least 20 data points per tooth are available in the 
data set collected to ensure sufficient sensitivity of the results.

The types of measurements that can be made on a double-
flank tester are shown in Figure 3 and will be explained in the 
following sections.

Total composite variation. Measurement of the total com-
posite variation (error) is the 
difference between the maxi-
mum and minimum indica-
tor (or linear detector) read-
ings during one rotation cycle 
of the test gear (Fig. 3). The 
total composite variation 
result includes effects of run-
out in the gear, plus anomalies 
in the tooth pitches, profiles 
and helix. It also reports the 
total effect in terms of this lin-
ear change as variation in tight 
mesh center distance. It is not 
possible to accurately establish 
the magnitude of each indi-
vidual effect on the total com-
posite variation using the dou-
ble-flank test alone. Hence, 
the double-flank test is very 
good at screening production 
quality and flagging poten-
tial errors, but the results may 
not identify the specific nature 
of the problem. Other tests, 
(such as analytical inspec-
tions) would need to be per-

formed in order to more closely identify the exact nature of the 
defect.

Tooth-to-tooth composite variation. The tooth-to-tooth com-
posite variation (error) is defined as the greatest deviation indi-
cator reading within a single, circular tooth pitch. This result is 
based on the worst tooth on the entire gear. The gear tested in 
Figure 3 shows this to be in the zone around tooth 3.

As the number of teeth in a gear becomes smaller, the ratio 
of the tooth-to-tooth error to total composite error generally 
increases. In the extreme condition, a single-start worm (i.e., 
one tooth) will have a tooth-to-tooth composite error equivalent 
to its total composite error. As the number of teeth increases, 
the tooth-to-tooth results are considered to be a better indicator 
of anomalies in the tooth pitch, profile and helix.

Errors in gear pressure angle will result in a repeated pattern 
of arches similar to that shown between teeth 5 and 7 in Figure 
3. Use of tooth-to-tooth test limits also helps to control burrs 
and nicks in gears that are not always detected by analytical 
measurement techniques.

Tight mesh center distance. One of the most powerful uses of 
the double-flank test is to measure and control gears not only 
for total composite variation, but also for tight mesh center dis-
tance. The ability to measure this variation gives the necessary 
insight to control both tooth size and composite parameters 
simultaneously. Since AGMA and ISO accuracy standards do 
not include the effect of tooth size, tight mesh center distance 
is not discussed in those standards. However, the effectiveness 
of this tooth size measurement should not be overlooked when 
evaluating backlash in a gear mesh.

Tight mesh center distance, as shown in Figure 3, can be mea-
sured if an additional calibration step is performed during the 

Figure 3  Double-flank inspection report (courtesy of Web Gear Services Ltd.).
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gage set-up. If the dial indicator or detector is calibrated to a 
known center distance reading between the spindles prior to 
measurement (Fig. 4), then the actual tight mesh center distance 
will be the difference between the calibrated value and the roll-
ing variation. Maximum and minimum test limits must be estab-
lished for tight mesh center distance. These limits are shown by 
the horizontal red lines on the chart in Figure 3. Every portion 
of the actual tight mesh center distance measurement must be 
within the minimum and maximum boundaries for a test gear to 
be acceptable. When properly calculated through the gear design 
process, adherence to these boundaries will ensure maximum 
and minimum operational backlash levels in the gear mesh.

The Calculation of Tight Mesh Center Distance 
Limits for Spur, Helical, Crossed-Axis Helical and 
Worm Gears
In order to establish the maximum and minimum tight mesh 
center distance limits for external or internal spur, helical, 
crossed-axis helical and worm gears, the following gear design 
data must be available:
 mn Is the normal module of the system, mm
 zw Is the number of teeth on the test gear

Note: For external gears, use a positive value for zw, and 
for internal gears, use a negative value.

 z3 Is the number of teeth on the master gear
 βw Is the helix angle of the test gear, degrees or radians
 β3 Is the helix angle of the master gear, degrees or radians

Note: For spur gears, βw = β3 = 0, degrees or radians
Note: For right-hand helical gears, worms and worm 

gears, use a positive value for the helix angle. For 
left-hand helical gears, worms and worm gears, 
use a negative value for the helix angle.

 αn Is the normal pressure angle for the mesh, degrees or 
radians

 snw max Is the maximum normal circular tooth thickness of test 
gear, mm

 snw min Is the minimum normal circular tooth thickness of test 
gear, mm

 sn3 Is the normal circular tooth thickness of master gear, mm
 FidTw Is the total composite tolerance for the test gear, mm

The calculation procedure that follows is sufficiently general 
to account for gears with non-standard tooth thicknesses and 
heavily modified profiles.

Step 1. Calculation of the standard center distance, a.The 
standard center distance, a, of an external or internal test gear 
when meshed with an external master gear on a double-flank 
tester is:

(1)

a = zw mn [ zw + z3 ]| zw | 2 cos βw cos β3

where
 a is the standard center distance between the test gear and 

the master gear, mm.
Note: These equations are sufficiently general to account 

for external or internal spur, helical, crossed-axis 
helical and worm gears.

Parallel-axis double-flank tight mesh center distance limits. 
The following additional steps are needed for the calculation of 
tight mesh center distance test limits for external and internal 
parallel-axis spur and helical gear meshes.

Step 2. Calculation of the transverse pressure angle, αt. The 
transverse pressure angle, αt, for the mesh on the double-flank 
tester is:

(2)

αt = tan-1 ( tan αn )cos βw

where
 αt is the transverse pressure angle for the mesh in degrees or 

radians
Note: For spur meshes αt = αn

Figure 4  Calibration for tight mesh center distance (courtesy of Web 
Gear Services Ltd.).
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Step 3. Calculation of the maximum tight mesh center dis-
tance limit, ad max. The maximum tight mesh center distance, ad 

max, of the test gear with the master gear for a spur and parallel-
axis helical double-flank mesh is:

(3)

ad max = a cos αt + zw FidTw

cos {inv-1[inv αt −
zw ( π mn − sn3 − snw max )]} | zw | 2

| zw | 2 a cos βw

where
 ad max Is the maximum tight mesh center distance of the test 

gear with the master gear, mm
 inv φ Is the involute function and inv φ = tan φ - φ with φ 

expressed, radians
 inv-1 x Is the inverse involute function where x = inv φ = tan φ - 

φ.

Therefore, the result of the function inv-1 x = φ, where φ is an 
angle.

For more information on the calculation of this function, see 
AGMA 930-A05, Annex E (Ref. 1).

Step 4. Calculation of the minimum tight mesh center dis-
tance limit, ad min. The minimum tight mesh center distance, ad 

min, of the test gear with the master gear for a spur and parallel-
axis helical double-flank mesh is:

(4)

ad min = a cos αt + zw FidTw

cos {inv-1[inv αt −
zw ( π mn − sn3 − snw max )]} | zw | 2

| zw | 2 a cos βw

where
 ad min is the minimum tight mesh center distance of the test gear 

with the master gear, mm.

Note: For internal gears, Equation 3 will actually give a mini-
mum value result and Equation 4 will give the maximum value 
result.

When specifying tight mesh center distance limits, it is 
important to also include a definition of the master gear’s num-
ber of teeth and normal circular tooth thickness upon which the 
tight mesh center distance limits are based.

Crossed-axis helical and worm gear double-flank tight mesh 
center distance limits. The calculation for crossed-axis and 
worm gear double-flank meshes differs from other cylindri-
cal gear meshes because the gears “see” each other in a way that 
is analogous to two racks in mesh, as opposed to two involute 
gears in mesh. Crossed-axis helical gears include the case where 
the driving member is a master worm (Fig. 5) used to measure a 
helical gear at right angles. The calculations presented here are 
also sufficiently general to include the scenario where two heli-
cal gears mesh at shaft angles other than 90°, as well as a situa-
tion (Fig. 6) where a plastic test worm is meshed against a mas-
ter spur gear. In the case of worm gears, the master gear would 
actually be a cylindrical worm mounted at a right angle to the 
worm gear.

Note: The formulas presented here allow for meshing on the 
double-flank tester at any shaft angle.

Step 2. Calculation of the meshing shaft angle on the double-
flank tester, ψ. The shaft angle ψ, on the double-flank tester for 
a given crossed-axis helical gear or worm gear mesh, is calcu-
lated as follows:

(5)
ψ = βw + β3

where
 ψ is the meshing shaft angle on the double-flank tester, 

degrees or radians.

Note: Careful adherence to the sign of each of the helix angles 
(i.e., right- and left-hand) is crucial in this calculation.

Step 3. Calculation of the maximum tight mesh center dis-
tance limit, ad max. The maximum tight mesh center distance, ad 

max, of the test gear with the master gear for a crossed-axis helical 
or worm gear double-flank mesh is:

(6)

ad max =
(sn3 − snw max − π mn) + a + FidTw

2 tan αn 2

Step 4. Calculation of the minimum tight mesh center dis-
tance limit, ad min. The minimum tight mesh center distance, ad 

Figure 5  Master worm in double-flank mesh with a plastic helical gear 
(courtesy of Web Gear Services Ltd.).

Figure 6  Plastic test worm in double-flank mesh with a master spur gear 
at an offset shaft angle (courtesy of Web Gear Services Ltd.).
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min, of the test gear with the master gear for a spur and parallel 
axis helical double-flank mesh is:

(7)

ad min =
(sn3 − snw max − π mn) + a + FidTw

2 tan αn 2

Some software programs incorrectly calculate tight mesh cen-
ter distance for crossed-axis helical gears and worm gears using 
the parallel axis approach in the previous section, instead of this 
method. If the sum of the normal circular tooth thicknesses 
between the master gear and test gear are close to the normal 
pitch, the calculation procedure detailed in the previous section 
may present results that are close to the actual values. However, 
as the sum of these tooth thicknesses deviates from the normal 
pitch, calculation error becomes increasingly significant. As 
such, the method shown in this section is always preferred for 
crossed-axis helical and worm gears.

Test radius. Test radius can be measured on a double-flank 
tester, as is demonstrated in Figure 3. Test radius is similar to 
tight mesh center distance in terms of set-up and calibration. 
However, it differs in that it is calculated as the tight mesh cen-
ter distance of the mesh, minus the test radius of the master 
gear, as shown in the following equation:

(8)

Rrw = ad −
zw Rr3| zw |

where
 Rrw Is the instantaneous test radius 

of the external or internal test 
gear (i.e., working gear), mm

 ad Is the instantaneous tight mesh 
center distance of the mesh on 
the double-flank tester, mm

 Rr3 Is the test radius of the master 
gear, as seen by a rack (see 
next section for further 
explanation), mm

Thus the scale between the left-side 
vertical axis in Figure 3 and right-side 
vertical axis is shifted by the magni-
tude of the master gear test radius.

One of the reasons why test radius 
is specified instead of tight mesh cen-
ter distance is due to the common 
misconception that the master gear’s 
number of teeth and its normal circu-
lar tooth thickness have no influence 
on the limits of a test gear’s test radi-
us. The assumption is that, regard-
less of the master used, the test radius 

limits of a test gear are constant. If this statement were true, it 
would then obviously be an advantage in circumstances where 
a manufacturer may have a different master gear than the pur-
chaser. However, in reality, careful analysis of Equations 1–8 
shows that there is some difference in the test radius results, 
depending on the master gear’s number of teeth and normal cir-
cular tooth thickness. An illustrative example is shown in Table 
1, where master gears A and B have different numbers of teeth 
and normal circular tooth thicknesses, resulting in significantly 
different test radius limits on the same test gear.

There is therefore no practical advantage in specifying test 
radius instead of tight mesh center distance. In both cases the 
master gear’s number of teeth and normal circular tooth thick-
nesses must be defined to make the specification valid. It is 
common to report either tight mesh center distance or test 
radius, but not necessarily both. Tight mesh center distance has 
greater international usage as compared to test radius. Most 
North American electronic versions of double-flank testers 
available will report tight mesh center distance and test radius, 
while European or Asian equipment often does not include test 
radius results with their equipment.

Test radius of the master gear, Rr3. In order to calculate the 
result in Equation 8, the test radius of the master gear, Rr3, must 
be determined. Unfortunately, there are several methods by 
which the test radius of a master gear is defined — all having 

Table 1  Numerical example of the effect of master gear normal circular tooth thickness and number of teeth 
on the test radius

Master gear A Test gear Master gear B
Module, mm 1.0 1.0 1.0

Number of teeth 38 20 50
Pressure angle, degrees 20 20 20

Total composite tolerance μm - 96 -

Normal circular tooth thickness, mm 50% of circular pitch 
1.5708 ±0.000 mm

40% of circular pitch 
1.2566 ±0.020 mm

60% of circular pitch 
1.8850 ± 0.000 mm

Test radius limits, mm 9.539 ±0.080
9.568 ± 0.075

Figure 7  Test radius of a master gear (in black) against a rack (in red) or a similar 
master (in blue).
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potentially different results — thus creating even more confusion 
in the industry.

The practical issue in the definition is that the test radius may 
be different, depending on whether the master gear is defined 
by its action against a rack or itself (Fig. 7), or against another 
cylindrical gear. Furthermore, if using a definition based on its 
action against another cylindrical gear, a single master gear may 
have many different test radius values, depending on the cylin-
drical gear it mates with. Hence, based on Equation 8, the test 
radius of a test gear will change, depending on the test radius 
of the master. Therefore if a master gear has an ambiguous test 
radius definition, the part gear test radius will also be inherently 
ambiguous. Specifying tight mesh center distance as opposed to 
test radius will remove this ambiguity.

However, if test radius must be used, the most common prac-
tice to avoid ambiguity is to define the test radius of a master gear 
by the tight mesh radial distance between the master gear center 
and the pitch line of a mating rack, whose pitch line is defined as 
the location where the tooth thickness is equal to its space width. 
In making such a standardized definition, a master gear will have 
a single test radius, regardless of the gear it mates with.

The equation for the test radius of a master gear, Rr3, as seen 
by a rack, is as follows:

(9)

Rr3 = mnz3 + (sn3 − 0.5 π mn)
2 cos β3 2 tan αn

where
 Rr3 is the test radius of the master gear as seen by a rack, mm.

Test radius limits of a test gear. The test radius of a test gear is 
related to tight mesh center distance by the following equations:

(10)

Rrw max = ad max −
zw Rr3| zw |

and
(11)

Rrw min = ad min − zw Rr3| zw |
where
 Rrw max Is the maximum test radius limit of the test gear, mm
 Rrw min Is the minimum test radius limit of the test gear, mm

Eccentricity (double-flank runout). In electronic (and com-
puter-driven) gages, it is possible to use a Fourier transform 
calculation to extract the first-order, sinusoidal wave compo-
nent from the measured double-flank data. The first-order com-
ponent is shown as the green sinusoidal wave in Figure 3. By 
using this technique, the magnitude and orientation of the test 
gear’s eccentricity can be established. In the Figure 3 example, 
the “runout” result (i.e., the peak-to-peak amplitude) is report-
ed as 0.008 mm. This data may be useful in identifying how to 
improve net-shape gears (such as plastic, powder metal, or die 
cast gears) where the location of the mounting datum (i.e., bore 
or journal) to the gear geometry can sometimes be adjusted 
through tooling changes. The Figure 3 example would therefore 
report that the gear’s datum as mounted on the double-flank tes-
ter is eccentric from the gear’s teeth (as a single set) by one-half 
of the runout or, in this case, 0.004 mm.

The term runout is a misnomer when it is derived by this 
double-flank method. To be more precise, this is a double-flank 

runout and should not be confused with the runout result one 
would obtain by actually inserting a pin or ball between the 
flanks of the teeth and comparing the maximum and minimum 
result of the individual readings. The two methods may yield 
slightly different results. When using double-flank runout meth-
ods, the test reports should indicate the identifier “double-flank 
runout” instead of just “runout.”

Master Gear Design Considerations
Master gears used in double-flank composite measurements 
must meet the following criteria in order to mesh properly with 
a test gear.
• The tip of the master gear must not contact the test gear 

below the form diameter of the test gear. This applies to initial 
contact and to any type of secondary contact in the fillet zone 
due to inadequate clearance.

• The tip of the test gear must not contact the master gear below 
the form diameter of the master gear. This applies to initial 
contact and to any type of secondary contact in the fillet zone 
due to inadequate clearance.

• The minimum contact ratio of the double-flank test must not 
be less than 1.0 when accounting for maximum tooth thick-
ness, minimum outside diameter, maximum root diameter 
and maximum tip radius of the test gear. Should the contact 
ratio drop below 1.0, the meshing action of the gears on test 
will generate an immediate jump in the double-flank result 
for every tooth meshing cycle. This happens when the spring 
of the slide on the composite tester compensates for the loss of 
mesh force by abruptly pushing the gears together.

• The master gear and the test gear must have the same normal 
base pitch. In most cases, this is the case when the normal 
module and normal pressure angle match between the mas-
ter and the test gear. However, mathematically it is possible to 
mesh a master gear with a different normal module and nor-
mal pressure angle than the test gear if the following equation 
is satisfied:

(12)
π mnw cos αnw = π mn3 cos αn3

where
 mnw Is the normal module of the test gear, mm
 mn3 Is the normal module of the master gear, mm
 αnw Is the normal pressure angle of the test gear, degrees or 

radians
 αn3 Is the normal pressure angle of the master gear, degrees or 

radians

This may be useful in some special circumstances, depending 
on product design.
• For parallel-axis helical gear double-flank arrangements, the 

master gear must have an equal helix angle to the test gear but 
of opposite hand.

• For crossed-axis helical gear double-flank arrangements, 
the shaft angle setting on the double-flank tester must fulfill 
Equation 5.

In addition, the following recommendations for good practice 
may also be of use:
• The maximum contact ratio of the double-flank test should be 

less than 2.0 when taking into account minimum tooth thick-
ness, maximum outside diameter, minimum root diameter, 
and minimum tip radius of the test gear. High contact ratios 
on the double-flank tester promote more overlapping of the 
mesh and may hide errors in the test gear that may other-
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wise exist. Helical gears, due to their face widths, may have an 
overall contact ratio greater than 2.0 when run against a mas-
ter gear covering its full face width. In such cases a decision 
should be made to either accept the possible smoothing out of 
errors that would result with this high contact ratio, or to pos-
sibly reduce the face width of the master gear and measure the 
helical gear in different contact zones along the test gear’s axis 
while maintaining an overall contact ratio of less than 2.0.

• In the case of crossed-axis helical double-flank meshes where 
the driver is a worm, a worm can also be considered for the 
master gear. This may provide an advantage for the test gear 
in that only the functional zone is measured and other tooth 
errors that will not even be seen in the actual product mesh 
will be ignored. In some cases, a narrow-face-width helical gear 
master may provide a similar result in a parallel-axis arrange-
ment. In applications where a worm master is used, it may be 
necessary to add lubrication to the double-flank mesh to assist 
a sliding action in the mesh without causing reading errors.

• The extent of the master gear’s reach (i.e., the master gear’s 
outside diameter) into the test gear should be carefully cho-
sen. Although, as stated above, the mesh under test must have 
a minimum contact ratio of 1.0 and a maximum contact ratio 
of less than 2.0, there must also be no contact of the master 
beyond the form diameter of the test gear. This may afford a 
wide range of choices in between those requirements when 
establishing the outside diameter of the master gear. The deci-
sion on what master design to use may be based on the cost 
and availability of existing or commercially available master 
gears, or it may be based on measuring a test gear to at least 
its start of active profile location in the actual application.

• Every combination of master gear and test gear should be 
checked at all tolerance levels to make sure the mesh meets 
the criteria described here. Just because an off-the-shelf mas-
ter gear is commercially available does not mean it will mesh 
properly with a specific test gear.

• In order to machine and produce high-quality master gears by 
grinding, the bore on the master would need to be sufficient-
ly large enough for a stable mandrel to hold the master gear 
during machining. Ground master gears with bores less than 
6 mm should be carefully considered for the effect on master 
gear precision from a small-diameter machining mandrel.

Product Design Considerations
Tight mesh center distance and test radius have been described 
as a means of using double-flank composite inspection to con-
trol functional tooth thickness. The functional tooth thickness is 
the tooth thickness as perceived by a mating gear and therefore 
includes effects of all tooth deviations as previously described. 
The nominal tooth thickness (sometimes referred to as “design 
tooth thickness”) does not include any tooth deviations other 
than allowance for thickness variation at the standard pitch 
diameter without runout.

As a result, the inspection of tight mesh center distance or test 
radius will provide information on operational backlash expect-
ed in a gear mesh if both gears are double-flank tested individu-
ally and the actual mounting center distance is known.

When designing gears, one of the goals is to control back-
lash. Too little backlash may result in power loss, heat build-up, 
wear and noise. Too much backlash may result in excessive lost 
motion and potentially abnormal noise upon direction reversal. 
One of the common errors in gear design is to ignore the effect 
that total composite variation has on backlash. As an example: 

in an external gear mesh, when the tight mesh center distance of 
two gear positions peak simultaneously, the result will be a mini-
mum backlash condition. On the other hand, the same gears with 
minimum simultaneous tight mesh center distance positions will 
result in a maximum backlash condition. Housing center distance 
variation will further contribute to the backlash result.

When designing gears, the total composite tolerances need 
to be established simultaneously with the tooth thickness selec-
tion criteria in order to establish the true design backlash. The 
selection of total composite tolerances as an afterthought at the 
end of the design process may result in an inappropriate level of 
backlash or a potential for gear binding in the assembly.

Calculation of Backlash on External Spur and 
Helical Gears, Including the Effects of Total 
Composite Tolerances
When designing external spur and helical gears, the following 
calculation procedure may be useful in establishing backlash 
goals when taking total composite tolerances into consideration.

Calculation of the standard pitch diameters. The standard 
pitch diameter of a pinion or gear is:

(13)

dk =
zk mn

cos β
where
 k Is a general subscript with value k = 1 for the pinion, and 

k = 2 for the gear
 dk Is the standard pitch diameter of the pinion or gear, mm
 zk Is the number of teeth on the pinion or gear
 mn Is the normal module of the pinion and gear, mm
 β Is the helix angle of the pinion and gear, degrees or radians

Calculation of the transverse pressure angles. The transverse 
pressure angle, αt, of the pinion and gear is:

(14)

αt = tan-1 ( tan αn )cos β

where
 αt Is the transverse pressure angle of the pinion or gear, mm
 αn Is the normal pressure angle, degrees or radians

Calculation of the base circle diameters. The base circle 
diameter, dbk, of a pinion or gear is:

(15)
dbk = dk cos αt

where
 dbk Is the base circle diameter of the pinion or gear, mm

Calculation of functional operating pitch diameters. The 
functional operating pitch diameters of the pinion and gear dif-
fer from the operating pitch diameters typically calculated in 
other documents in that the effect of the total composite toler-
ances are included.

The maximum and minimum functional operating pitch 
diameters are:

(16)

dwk max functional =
zk (2 amax + FidT1 + FidT2)

(z1 + z2)
and

(17)

dwk min functional =
zk (2 amin − FidT1 − FidT2)

(z1 + z2)
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where
 dwk max functional Is the maximum functional operating pitch 

diameter of the pinion or gear, mm
 dwk min functional Is the minimum functional operating pitch 

diameter of the pinion or gear, mm
 amax Is the maximum mesh center distance, mm
 amin Is the minimum mesh center distance, mm
 FidT1 Is the total composite tolerance of the pinion, mm
 FidT2 Is the total composite tolerance of the gear, mm

Calculation of functional operating transverse pressure 
angles. The functional operating transverse pressure angle is 
calculated at the functional operating pitch diameter positions 
as follows:

(18)

αwtk max functional  = cos-1 ( dbk )dwk max functional

and
(19)

αwtk min functional  = cos-1 ( dbk )dwk min functional

where
 αwtk max functional Is the maximum functional operating transverse 

pressure angle, degrees or radians
 αwtk min functional Is the minimum functional operating transverse 

pressure angle in degrees or radians

Calculation of maximum and minimum transverse circular 
tooth thicknesses at the functional operating pitch diameter. 
The maximum and minimum transverse circular tooth thick-
nesses at the functional operating pitch diameter can be calcu-
lated based on the following equations:

(20)

swtk max functional = dwk max functional ( snk min + inv αt − inv αwtk max functional)dk cos β
and

(21)

swtk min functional = dwk min functional ( snk max + inv αt − inv αwtk min functional)dk cos β
where
 swtk max functional Is the maximum transverse circular tooth 

thickness at the maximum functional operating 
pitch diameter for the pinion or gear, mm

 swtk min functional Is the minimum transverse circular tooth 
thickness at the minimum functional operating 
pitch diameter for the pinion or gear, mm

Calculation of mesh backlash. The maximum and minimum 
transverse circular backlash at the functional operating pitch 
diameter is:

(22)

jwt max = 
π dw2 max functional − swt1 max functional − swt2 min functionalz2

and
(23)

jwt min = 
π dw2 min functional − swt1 min functional − swt2 min functionalz2

where
 jwt max Is the maximum transverse circular backlash at the 

function operating pitch diameter
 jwt min Is the minimum transverse circular backlash at the 

function operating pitch diameter

Conclusion, Part I
(Ed.’s Note: Part II of this paper will appear in the March/April 

issue of Gear Technology.) 
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