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Abstract:
The Itraditional method 'of computing the geometry factor has

limitations in its consideration of intemal gears. gears with thin rims
or gears with rims having complexities such as, spokes and holes.
The finite element method may be used in suchinstanees. but is
often Ilime consuming for both modeJ development and computa-
tion. The boundary element meth.od described in this article, pro-
v:ides an. alternative which. is easier to set up and allows one to com-
pute geometry fa.Cl:ors fOf many 'loath oonfigur.ations ..The examples
shown in this article use th boundazy ,element mthod 'toShowhow
the peak stress amplitude and its location. change with diffel'ent rim
thickness ands:upport conditions.

Introduction
The geometry factor, which is a fundamental part of the

AGMA strength rating of gears, is currently computed using
the Lewis parabola whi~h allows computation ofthe Lewis
form. factorY' The geometry factor is obtained from this
Lewis factor by applying a stress correction factor. a helical
overlap factor and load sharing ratio. This method. which
originallyrnquiredgraphical eonstructlon methods and more
recently has been computerieed, works reasonably well for
edema~ gears with 'thick .rims.l2-6' However. when thin rims
are encountered or when evaluaung the strength of internal
gears, the AGMA method cannot be used. When these situa-
tions are encountered, most investigators have used finite
'elements to determinethe maximum tooth root stresses. Ex-
amples of such .an,alyses for thin rimmed gears are presented
by DragoP·8J, Suzuki et aV9) Chong and Kubo!101 and
Eloranta. (11) Castellani and Castelli(ll) comparie both AGMA
and [SO r-ating methods with finite element results. In addi-
tion. Chonget 311113.141 have developed an approximate for-
mula fo·r the analysis of thin rimmed gears. Ishida. et al(15.16)
and Drago(17) present measured stress data for thin rimmed
gears. The state of stress for in'temal. gears has been analysed
by numerous investigators. (18-241

The previous investigators have shown that the assump-
tions of the AGMA method for Ithin rimmed gears and for
ilnt'emal gears cannot be, used successfully. The finjte element
method is viable. but because of time consuming procedures

in creating a model and in handling unusual boundary shapes.
it can be quite burdensomand wil1 usually require con-
siderable computer power. ,even fOIi two dimensional
elements, An .analysis procedure which shows promise, bot:h
from a model building standpoint and from ccmputanonal
efficiency. is the boundary element method .IZS.lb1 This
method. which has some of th.e features of ,the finite ellement
method. has been applied to gears by Gakwaya. et aL127)
Rubench1k(28) used a similar method called the boundary in-
tegral method for the computation of root stresses. The paper
by Odaet al, (31) etc. which appeared at the same time that
this article was being prepared. carries out an extensive com-
parison between the stresses at the roots of 'thin rimmed ex-
ternal and internal gears by the boundary element method.
the finite element method and from experiments. Since the
boundary element method potentially can be used on per-
sonal computers and models can be easily developed. this
article presents an introductory study of its potential in tom-
puhng geometry factors.

Subsequent sections of this article outline the fundamen-
tal theory of the boundary element method and present some
preliminary results. The computational procedure is such that

At.rrHORS:

DR. SANDEEP M. VQAYAKARreceived his BTech ,degree from
the Indian Institute of Technology at Bomblzy and his M.S. and Ph.D'.
from Ohio State University. He is curTe11tly a research associJ1te at
Ohio State and II member of ASME.

DR. DONALD R. HOUSER is on the faculty of the Depa11mmf
of Mechanical Engineering, .ohio State Unitrersity .. In addition to his
teaching responsibilities, he has researched and published 1M the areIU
.of gear dynamics and' noise.IJ-b.elts., vibratio11' diagnostics and uibm-
rion .signaJ analysis. He is alSo currently director .01 the unwersitys
Gear Dynamics and Gear Noise Research Laboratory. Dr. Houser
is a member of AS ME. SAE, AGMA and Tau Beta Pi. Pi T!W Sigma
and' Sigma. Xihonol"lVl/ fraternities. He is also duzinnanof the ASME
Power Transmission I<nd Gearing Committee .. Dr. Houser received
his degreesiJ1 mechanical engineering from the University of Wisconsin
at Madison.

January IFebruary19887



THE USE OF BOUND.ARY ELEMENTS ...•
(continued fr,om p~ge 9)

.... It 1

RII. 3 - Stress distribution along the boundary for a thick rimmed external
geM supported. at the ends.

11I •• 1t 2

Fig. 4 - Stress distribution along the boundary for a, thick rimmed external
gear supported along the inner bore.

of the critical stress point did not change. and the J factor
was, found to increase from 0.335 to 0 ..343 just by changing
'the boundary conditions ..Mesh 3 (Fig. 5) shows a. thin rimmed
gear whose rim is unsupported, and Mesh 4 (Fig. ,6) shows
'the same thin rimmed gear with a fixed rim. The boundary
condition ,effect on the J fa.ctor is much greater for the thin
rimmed case, and the stresses increase when the constraints
for the thin rimmed 'case are removed. The location of the
ai.tica] point also changes. A computer analysis using the
AGMA 218.01 standard gave a value of 0.3019 for tile J fac-
tor for cases 1 truough 4, and the graphs in the A:GMA stan-
dard give a J factor of about 0..3.2.Finite element models were
also created and run on ANSYS for cases 1 thJIough 4. fig.
10 ~hows the finite element model for case 4, and Fig. 11
shows the contour plot of the maximum prindpal stress for
this run. The J factors &om the finite elemem runs arealso
'tabulated in Table 1. The :finite element models show stresses
thatare consistently 10%hjgher than those obtained by the
boundary element models, This may be due to the differ,ent
It,echniques used by the two methods in extrapolating the
stresses to the surface and needs further investigation. Table
3 shows J factors obtained for gear teeth wilh the same pro-
file and roots as in cases 1 through 4. as the inner radius is

Fig. 5 - Stress distribution along the boundary for a thin rimmed external
gear supported at th ends,

11I •• !h ..

.Fill. 6-StftSS distributlon alcng theboundary for a thin rimmed ·external
geM supported along. the inner bore.

varied frorn O.S to 0.8, with the rim supported ,only at its
edges,

Meshes Sand 6 (Figs ..7 &: 8) show that thisappr,oach can
also be used with internal gears. and Mesh 7 (Fig. 9) shows
how this method can be used with gears with a smaU number
of 'teeth when undercutting 'takes place, Plane stress condi-
tions were assumed for these cases, but plane strain condi.-
tions could have been used. The decision as Ito which is more
.applicable would have ,to be made by the user.

Summary and Future Research
The boundary element methodology has several. advan-

tages overusing 'the 'Standardized gear rating schemes. It can
'take into, account different boundary conditions, account for
plane stress or plane strain. conditions, determine' the actual
critical point and include the effects of support ,conditions
and rim thickness. lFurthennore. the method can ha~dl In-
ternal gears and can also compute displacements. Since the
complete multi-axial state .of stress at any point is available,
any failure theory can be used to iden;tify the critical point
and to compute the geometry factor.

The method does. however, have limitations. The state ,of
stress in. gear teeth is almost always threHii.mensi.onal,and
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Men 5

F~g. 7 - Stress distribution along the boundary for an internal gear supported
at the ends.

Fig.S - Stress distribution along the boundary for an internal gear supported
along the outer radius.

Table 3. Variation of the geometry factor
with the rim thickness

Ratio of
rim thickness

to whole
tooth depth

.Inner .radius
'(inches)

Geometry
Factor J

0'.50'
0.70
0.75
0.80

1.5
0 ..67
0.46
0.2-5

0.334
0.334
0.291
0 ...159

tara. complete study, this method cannot replace full fledged
three-dimensional finite element analysis, but only supple-
ment it. The boundary element method does not allow stress
computations on the boundary, but this [imitation can be
overcome by computingthe stresses at two points, near the
boundary and extrapolating the values to the boundary. The
time required to compute the system matrices varies as the
square of the number of nodes. Thus, the efficiency of the
method decreases as models get large. Also, unlike the finite
element method, the matrices are not banded or symmetric.
However, meshes with 100 to 120 nodes serve well enough,
and these limitations do not cause any serious problems.

Since only preliminary results are presented here, a con-
siderable amount of case history experience is needed in. order
to assess the potential of this method more accurately, In par-
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Flg. 9-Stress distributionalong the boundary for an. external ge<II with 12
teeth supported. along; the inner bore,

Flg.1D-Finite element model for case 4.

Fig. ll- Contour plot of maximum principal stress in the finite element model
of case 4.

ticular, there should be some corroboration between I fac-
tors computed by the boundaryelement method and those
computed by the AGMA method. The following studies are
anticipated in the next year to. provide further verilicaHon
of this method for the evaluation 'of geometry factors:
• Comparison of boundary element results with current

AGMA analysis and with finite element analysis fora
broad spectrum of gear and hob geometries ..Computation
time comparisons with finite element methods will also' be
made ..

• Comparison of boundary element results with computa-
tiona] and experimental results in the literature for thin
rimmed gears and internal gears.

• Determine the feasibility of using persanalcomputers for



the geom.etry factor calculationusing boundary elements ..
• Enhance the program to take care of the roller boundary

conditiens and to allow models to incorporate a number
of t,eeth greater than three.

Appendix
Boundary Element Method Equations

Boundary element methods use approximating functions.
that satisfy the governing ,elasticity equations wi.tmn the outer
periphery ,of the body being analyzed, but not the boundary
,conditions. These functions are called the fundament.al
solutions.

figs. 12 &; 13 showa typicatl body which is to be analyzed.
The ,elasticity equations which govern the anal:ysis have been
presented here in tensor notation for the sake of conciseness.

for every point in the body of interest to be ina state of
equilibrium, the stress field must satisfy the following
equilibrium equation:

equilibrium: aij.1 - 0 in 'D

Here iand j vary from 1 to 2 for a two-dimensional analysis
and 0 is the interior of the body.

The surface loads or the tractions applied to the body are
related to the stresses as

Fig. l1-Body Uflder consideration.

fig. 13-BoUfldary el men! discretization.

These tractions are prescribed on part of the body's surface
I'2' On the rest of the surface of the body, the displacements
U.i have to be prescribed. Uij is the stress tensor field and 'the
u, is the displacement vector field. The starting point for
both the boundary element method and the finite element
method is an integrated form of the equilibrium 'eq-uation:

for all ut': J Uj"'uiHdO - 0D '
where uj is an a.rbitra:ry wei,ghtin-8 function. The choice of
this weighting .function is one of the differ,ences between the
boundary and ~fin]teelement method. In the finite element
method, these functions are chosen to be the same as the
shape functions,. whereas, in the bound~ry element method,
the fundamental solutions are used.

Integrating by parts. (in~egration by parts in. two and ,three
dimensions is carried eut using Green's identity) we get:

I u~ ..n·dI' - J uj*ju..dO - 0l I II I - .-1]---
r Q

But it can be shown that

Therefore, the integral becom s:

J utlrijnj,dr
r

f u~fjidO - 0
Q

or,

Iut pldr - J ,uljflj<IO - 0
r D

The above set. of equations is characteristic of most finite ele-
ment developments. However, the boundary element method
carries out integration by parts once more:

fUraijnjdr
r

!uilEijdO - 0
11

As beiore,

J uib,;njdr - !uijui,jdO - 0
fO

and using Glleen's identity to integrate by pans once more,
for all ut,

J ul..,n·dr' - r u-O":~njdr-1")--1- J ,- .') - -
r r

J UiO"ii.lclO - 0
Q

'Ii' _

If we choose the field Uj to be the response to a u_rdt COIl-

eentrated load at point P in the'k' direction, (Such at field
is called a fundamental solution of the equilibrium equation.l
then:

WhereOik is 'the Kronecker delta and .1.(P) is 'the Dirac delta
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function.
Hence,

J ujO'il.jdO- -!UiOlk ~(P) dO - -CpUk(P) (A.I)
D I)

where
Cp - Oif P lies outside
'Cp- 1 if P lies inside
'Cp - 0.5 if P lies on a smooth boundary

In the general case, Cp has to be determined by Integration,
We then have:

JUj'l:rijojdr
r

IUjO"ijnjdI' - CpUk(P) -0
r

f utp,dr
r

!UjP;" dT - CpUk(P) - 0
r

To make ,this equation discrete, let Ui- !fmumiand Pi -
!fmPmJ,' where !fm arethe shape functions defined along the
boundary of the body only. We do not need to interpolate
uiand Pi inside the body because the above integral is to be
evaluated only on the boundary.

The quantities Urnj and Pmi are the nodal values of the
displacements and the tractions, respectively ..At any given
node, either Umi or Pm; is known and the other value is
unknown.

For every source point P and every direction k, we can
make theabove integral equation discrete to get one linear
equation relating the Pmi and the Uml' A new point P is then
moved from one nodal point to the next and as many equa-
tionsare generated as there are unknowns. This gives a
system of linear equations:

i.e.
[Ii -ell u - IG]p

!H + CI U - !G] p

The matrix IC] contains all of the ,cp ·coefficients. Instead
or evaluating them by Integrating, an easier way to deter-
mine them is by applying rigid body displacements and zero
tractions in the above matrix equation.

The system of equations becomes:

(HI u - [GI p

which is then solved to determine the unknown tractions and
displacements,

Once all of the nodal displacements. and tractions are
known, Equation (A.I) can be used to determine the displace-
ment of any interior point P. This displacement can then be
differentiated to obtain the strains and hence 'the stresses in
the interior ,of the body.
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the geometry factor is directly determined 50 that it may be
used in the current AGMA 218.01 rating standard. Since the
AGMA method currently in. use is a two-dimensional analysis
method. the authors decided to use a two-dimensional bound-
ary element Note, however, that in many complex root stress
problems, three-dimensional analyses should be used in order
to obtain accurate stress results. Gakwaya et a1(27) show
comparisons of the computational time required by the
boundary element method and the finite element method ..
Hohe(Z9) discusses advantages and disadvantages of the
boundary integral equation method and compares it with the
finite element method for a plane-stress gear-tooth problem ..

Boundary Element and Finite Element Methods
The finiteelement method divides the body that is being

studied into many pieces or elements whose behavior is easier
to approximate than that of the whole body. The equations
describing each element are "assembled" ina. system of linear
equations and are then solved.

The boundary element method,. on the other hand, does
not divide the body under consideration into elements. For
a homogenous. isotropic body with no body forces, the only
causes for displacements and stresses within the body are
loads and displacements applied along the boundary. The
body can be considered to be part of an infinitely extending
material which is subjected to loads along the original bound-
ary. Thus, if a function which describes the response of an
infinitely extending medium to a point load is known, then
this function can be used to compute Ute response of the body
by moving the point load along the boundary and integrating
each individual response. Therefore, the integration which
is carried out numerically by breaking the boundary into
elements only needs to be carried out along the boundary.
The boundary element method has the advantage of not re-
quiring that the Interior of the body be divided into two-
dimensional elements with only the boundary being divided
into one-dimensional 'elements. Because of its mathematical
complexity and because other references, such as Brebbia, (25)

provide the mathematical details of the boundary element
method. its theoretical basis is not presented in. this article,
However, a summary of its theory is presented in the
Appendix ..

An important advantage of the boundary element method
is that it is usually able to represent areas of stressconcen-
tration and singularities better than general purpose finite ele-
ment methods ..Because only the boundary needs to be made
discrete in boundary element methods. it is possible to. work
with smaller systems of equations and arrive at very accurate
results.

Boundary Element Mesh Generator and Boundary
Element Program

The problem of writing a finite element mesh gene.rator
which is capable of creating good meshes for all possible types
of gear teeth and for many types of shapes is complicated;
whereas, writing a boundary element mesh generator is a
somewhat simpler task. It is possible to devise a mesh genera-
tion scheme that in two dimensions works very well for all
kinds of gear teeth with all assortment of shapes.

In the boundary element mesh generator used in the follow-
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ing numericalexamples, the only input data required is a
description of the hob that is used to cut the gears (or the
gear shaper, in the case of the internal gears) ..

The generator program computes the position and unit nor-
mal vectors at a number of points on the hob and uses these
values to compute the positions of the corresponding points
on the gear by using the conjugacy equations. Fig. 1 shows
the hob generating the geometry of a side of a gear tooth.
Undercutting is detected numerically, The boundary of the
gear tooth is divided into several segm.ents, and the user is
asked to input the number of boundary elements into which
each segment is to be divided, as shown in Fig .. 2.

The meshes generated by this program mode] three teeth,

Fig. 1-The process of generating the gear tooth geometry from the hob
geometry.

Fig. 2-Gear tooth boundary and its subdivision into segments.



TaMe' 1. Results oE~est cases

Number Radius of Ratio of rim Radius at J Factor J Factor
of teeth inner bore thickness to point of by the HEM by the FEM

Couter radius whole tooth max. stress
for into gear) depth from HEM

20 0.7" 0.67 0.864" 0.335 0.310
2D 0.7" 0.67 0.864 • 0.343 0.319
20 O.S' 0.25 0.856" 0.159 0.135
20 O.S- 0.25 0.876" 0.389 0.356
20 0.9S",1.2" 0.67 1.100' 0.123
20 0.95",1.2 • 0.67 1.100" 0.412
12 0.3- 0.67 0.478- 0.255

Mesh

1
2
3
4
5
6
7

with the load being applied on the center tooth. Three teeth
are used to aocurately model the ,effects of rim ,thickness and
of boundary conditions on the root stresses. The current pro-
gram provides two means of ,oonstraining the model, the first
being to .fixall sides of the tooth support, and the other be-
ing 'to,fix. only 'the ends of the rim and to leave the inner bore
free ..Other possible ways of constraining the teeth that are
to be implemented in the future include roller and contact
type boundary cenditions. The mesh that is generated can
be modilied toaccount for features such as keyways and
weight fil~ducing holes. It was found advisable not to make
the mesh too coarse at the point of load application or at
the supports ..

The user is given at. choioe IOf either specifying the radius
at which a unit normal load is applied on the involute part
of the profile, or letting the program compute 'the highest
point of single tooth contact and applying the load there. The
user is also given the choice between plane strain and plane
stress conditions for the gear tooth model. The ehelce be-
tween these two condltions depends on how wide the gear
tooth is i.n relation to its other dimensions.(30)

The meshes generated by the above mentioned mesh
generator are sent 'loa general two-dimensional boundary
element program wriUen by the authors. The boundary ele-
ment method does not all.ow eomputation of stresses on. the
boundary because' of the numerical behavior of the funda-
mental solution, which imposesa. restriction similar to the
finite element method, where one computes stresses only at

Table 2. D.imensions of the Hob used Ito Cut the External
Gears used in. ,the Test Cases.

Diametral pitch 10.0

20"

1.4

1.0

0.02 in

0.02 in

Pressure angle of the rack

Addendum constant of hob

Dedendum constant of hob

Comer radius at tip of the hob tooth

Fillet radius at root of the hob tooth

Gauss points. This program computes the displacements of
the nodes of the mesh and then searches along the boundary
for Ithe maximum stress at the boundary. Stresses at the
boundary are calculated by computing stresses at both one
element length and one-half element length from the bound-
ary and then ,extrapolating stresses Ito the boundary. The
multt-axial state of stress at all points is converted into, an
effective stress usmg one of the many available multi-axlal
theories of failure. In the numerical examples that follow, the
maximum principal stress is used as the failure ,criterion.

As per Ithe defining equation IOf the] fact.1011'in the AGMA
standard .218.01, U) -

where
Kl!, is 'the appUcation factor.
~ is the size factor.
Km is the load distribution factor,
K" is the dynamic factor,
.F is the fa.ce width,
WI is the 'transmitted load,
Pd is the diametral pitch and
] is the geometry Eactor.

The stress 'SeEM that the boundary element method com-
putes tndudes, the effect of the geometry that the J factor
represents. but does not include the effects 'of the applica-
tion, size, load distribution and dynamic factors. Ther,efoJle,

WI Pd
SBEM - (-)

F J

so that the' factor can be computed from the stress value
SBEM·

Numerical Examples
Table 1describes the seven gears used for the numerical

example r and Table 2 gjves the geometery of the hob that
was used for all the external gears. Mesh 1 (Fig. 3) isa ,thick
rimmed gear, whose rim, is not constrained, and Mesh 2. (fig.
41) is 'the same gear, whose rim is constrained. The location

(cotdinued on page 33)
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