
How should we consider random helix angle errors fHβ 
and housing machining errors when calculating KHβ? 
What is a reasonable approach?

QUESTION #1

Calculating KHβ Email your question — along with your name, 
job title and company name (if you wish to 
remain anonymous, no problem) to: jmcguinn@
geartechnology.com; or submit your question by 
visiting geartechnology.com.

Expert response provided by Hans-Peter Dinner:
Let us look at a mesh between a pinion and a gear. Both shafts 
are supported in a housing. Then, we should consider the fol-
lowing three errors: 

1. Helix slope deviation of pinion, fHβ1
2. Helix slope deviation of gear, fHβ2
These errors describe how much the flank of each gear is 

misaligned to the gear axis. 
3. Shaft parallelism error, fpar

This error describes how the two gear axes are misaligned with 
respect to each other. This is often simpli¬fied to the gear shaft 
misalignment with respect to the shaft of the pinion (or vice 
versa).

The errors are with respect to the plane of action, for a defini-
tion of the error see, e.g. — ISO1328 or AGMA2015.

The errors fHβ1 and fHβ2 can either be measured and aver-
aged values from production or they can be determined from 
the gear quality number Q; e.g. — Q = 6 (gear quality 6 as per 
ISO1328). The error fpar is more difficult to determine, as it 
not only considers the misalignment of one shaft to the other 
due to the misalignment of the housing bores, but it should 
also consider variations in bearing operating clearances and 
the misalignment between the gear pitch cylinder with respect 
to the corresponding shaft axis. For the sake of simplicity, let 
us assume the housing bore arrangement is tolerated in such a 
way that we know the permissible shaft or gear axes parallelism 
error from the manufacturing drawing.

All errors are considered as random and the mean is zero 
(e.g. — tolerances given in drawing are symmetrical). The errors 
are hence described as a tolerance around zero, i.e. — fHβ1 = ±a, 
fHβ2 = ±b and fpar = ±c where a, b, c are values in micron.

Now the question is how the tolerances or permissible 
errors — a, b, and c — are to be combined for the calculation of 
KHβ. For the resulting misalignment we define the tolerance by 
the character d and find in general terms:

(1)
fma = ±d

In a worst-case scenario, the values would be added up giving 
a resulting misalignment:

(2)
fma = ±(a + b + c)

However, as the errors a, b, c are random values, this approach 
is clearly conservative and not realistic. It is unlikely that if we 
combine two gears and a housing that, for all three components, 
we happen to select the worst-case of each. The resulting error 
will be overly high and will result in too high a crowning value, 

resulting in an unnecessary stress concentration on the flank in 
operation.

Let us assume that the manufacturing errors fHβ1, fHβ2 and 
fpar follow a normal distribution. As mentioned above their 
mean and average value is zero. Let us further assume that 
99.73% of all gears are within specification and that 99.73% of 
housings are within specification — or that the 3-Sigma rule 
applies. The 3-Sigma rule means that “nearly all” values are 
within plus/minus three standard deviations from the mean 
value. We may translate the 3-Sigma rule to the following 
image: if we produce a gear every day, it takes one year until 
one gear is out of specification.

If 99.73% of all gears and housings are within specification 
(3-Sigma rule applies), we know that three times the standard 
deviation of the manufacturing error is equal to the toler-
ance value a, b and c. Thus assuming that 99.73% of all gears 
and housings are within specified tolerances, we may define 
the manufacturing errors as normal distribution N, with mean 
value μ, standard deviation σ, valid over the range of the toler-
ance fields defined above:

(3)

fHβ1 = N(μ1, σ1
2, x) = 1 e

−1(x − μ1)2

with − a < x < + a, μ1 = 0, σ1 = a2 σ1

σ1√2π 3

fHβ2 = N(μ2, σ2
2, x) = 1 e

−1(x − μ2)2

with − b < x < + b, μ2 = 0, σ2 = b2 σ2

σ2√2π 3

fpar = N(μ3, σ3
2, x) = 1 e

−1(x − μ3)2

with − c < x < + c, μ3 = 0, σ3 = c2 σ3

σ3√2π 3

Also, we may express the resulting error, fma, as a probability 
density function as follows:

(4)

fma = N(μ3, σ4
2, x) = 1 e

−1(x − μ4)2

with − d < x < + d, μ4 = 0, σ4 = d2 σ4

σ4√2π 3

Because fHβ1, fHβ2 and fpar are independent of each other, 
we find the standard deviation σ4 as follows:

(5)

σ4 = √σ1
2 + σ2

2 + σ3
2

Again assuming that 3-Sigma rule applies for fma 
(i.e. — d = 3*σ4) we find:

(6)

d = 3 * √(a)2+(b)2+(c)2
3 3 3

And
(7)

fma = ±3 * √(a)2+(b)2+(c)2
3 3 3

Which means that after assembly, 99.73% of all gearboxes 
have a total misalignment of the flanks with respect to each 
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Figure 1  Normal distribution of manufacturing errors, resulting error, and worst-case scenario.
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other of fma = ±d — where d is calculated using the 
above formula.

The above relationships are shown in Figure 1.
The probability density functions (assumed 

to be normal distributions) of the three basic 
errors — fHβ1, fHβ2 and fpar — are shown in 
orange, blue and black. Also shown are the toler-
ances ±a, ±b, ±d corresponding to ±3*σ1, ±3*σ, ±3*σ3 
(where σ is the standard deviation).

Combining these three random errors, we find the probabil-
ity density function (again assumed to be a normal distribu-
tion) of the resulting error fma in green. Also shown is the tol-
erance ±d corresponding to ±3*σ4.

For comparison, the worst-case scenario where d = a + b + c is 
shown in red.

We can clearly see that if we use the worst-case scenario, the 
value for d is much higher than the value for d, were we to use a 
statistical approach.

Applying the above formulas we find that the resulting toler-
ance range ±d if we apply 3-Sigma Rule as:

(8)

fma = ±d ±3 * √( 9.50μm )2+(14.0μm)2+(18.0μm)2
= ±24μm3 3 3

And if we apply a worst-case scenario, we find:
(9)

fma = ±d ± (a + b + c) = ±41.5μm

Considering the above statement that the worst-case 
approach is considered as overly conservative, then, for the 
above gear pair, we would consider a random manufacturing 
error in the mesh of fma = ±d = ±24.7μm, when calculating KHβ 
along ISO6336-1, Annex E.

KHβ calculation using statistical or worst-case scenario for 
fma. Let us consider again the above gear example. We apply 
helix angle modifications on the pinion such that we compen-
sate the shaft bending, shaft torsion and bearing deformation. 

The result is a symmetrical line load distribution, calculated 
along ISO6336-1, Annex E. If we ignore the random manufac-
turing error (assuming fHβ1 = fHβ2 = fpar = 0.0μm), the load 
distribution is then symmetrical and highest value lies in the 
middle of the gear face width due to an applied crowning of 
Cβ = 20μm. Let us also apply a curved end relief over 10% of 
the gear face width per side; the amount is CβI = CβII = 45.0μm 
(notations as per ISO21771 apply).

The resulting line load distribution is shown below, the 
resulting face load distribution factor is KHβ = 1.08.

If we now consider the random manufacturing error 
fma = ±24.7μm (from the 3 Sigma-Rule), we find three line 
load distributions (one without manufacturing error, one using 
fma = +24.7μm, and fma = −24.7μm), as shown below. The face 
load distribution factor has now increased to KHβ = 1.11. And 
yet, the highest line load remains within the crowned part of 
the face width; thus the design would be deemed quite accept-
able.

But if  we consider the worst-case manufacturing 
error — fma = ±41.5μm — we find the below line load distribu-
tions. The face load factor is now KHβ = 1.16 and we find that 
the highest line load is just where the end relief is about to start, 
thus rendering the design unacceptable in this case.

Conclusion
An easy-to-use approach has been presented showing how ran-
dom gear helix slope deviations and shaft parallelism errors 
due to housing errors can be considered in the calculation of 

Figure 2  Line load distribution in the mesh for the example — not 
considering any random manufacturing errors; KHβ = 1.08.

Figure 3  Line load distribution considering random manufacturing 
errors fma = ±24.7μm (green lines); KHβ = 1.11; highest line load 
occurs well within the crowned area of the face width; design 
considered suitable.

Table 1  Gear data used in example calculation
Property Symbol Unit, Referenc Value Pinion Value Gear

Number of teeth z - 24 99
Normal module mn mm 8.00 8.00
Quality grade Q ISO1328 5 6

Helix slope deviation fHβ μm 9.5 14.0
Shaft parallelism error fpar μm 18.0
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Figure 4  Line load distribution considering random manufacturing errors 
fma = ±41.5μm (red lines); KHβ = 1.16; highest load occurs in 
the transition area between crowning and end relief; design 
considered as not suitable.
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KHβ. It is shown that adding up all random errors in a worst-
case scenario is overly conservative. Applying the 3-Sigma 
Rule, errors may be combined in a different way such that the 
resulting error covers 99.73% of all cases. The difference in the 
resulting KHβ values when using this worst-case approach (in 
the above example, KHβ = 1.16) vs. the more realistic statistical 
approach (KHβ = 1.11) is significant when optimizing a design.

The use of the above statistical approach in consideration of 
manufacturing errors in the calculation of KHβ along ISO6336-
1, Annex E or AGMA927 is recommended.

A word of caution: experience shows that when designing gear 
lead modifications, or when calculating gear load distributions, 
much attention should also be paid to the bearing deformation 
and variation in bearing operating clearance. These effects are 
not elaborated above, but are summarized in the error fpar.

49March/April 2015 | GEAR TECHNOLOGY


