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The geometry of the bevel gear is quite complicated to describe mathematically, and much 
of the overall surface topology of the tooth flank is dependent on the machine settings 
and cutting method employed. AGMA 929-A06 — Calculation of Bevel Gear Top Land 
and Guidance on Cutter Edge Radius — lays out a practical approach for predicting the 
approximate top-land thicknesses at certain points of interest — regardless of the exact 
machine settings that will generate the tooth form. The points of interest that AGMA 929-
A06 address consist of toe, mean, heel, and point of involute lengthwise curvature. The 
following method expands upon the concepts described in AGMA 929-A06 to allow the user 
to calculate not only the top-land thickness, but the more general case as well, i.e. — normal 
tooth thickness anywhere along the face and profile of the bevel gear tooth. This method does 
not rely on any additional machine settings; only basic geometry of the cutter, blank, and teeth 
are required to calculate fairly accurate tooth thicknesses. The tooth thicknesses are then 
transformed into a point cloud describing both the convex and concave flanks in a global, 
Cartesian coordinate system. These points can be utilized in any modern computer-aided 
design software package to assist in the generation of a 3D solid model; all pertinent tooth 
macrogeometry can be closely simulated using this technique. A case study will be presented 
evaluating the accuracy of the point cloud data compared to a physical part.
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Introduction
The first question that comes to mind from any engineer pre-
sented by this paper is why would anyone be interested in a 
close approximation to the tooth flanks of a straight or spiral 
bevel gear? It is a valid question. A bevel gear designer is typi-
cally interested in the minute details of the tooth flank’s surface 
topology to gain the optimized contact conditions under loads 
that the bevel gears will operate. The method presented in this 
paper does not address any of these needs.

Purpose
One of the main purposes of this method is to create a working 
3D model for visual interrogation? of fits and proportions. The 
bevel designer is typically concerned with the proportions of a 
myriad of geometric values describing the basic layout of the 
tooth form. Many of the values like top land balance, slot width 
tapers, spiral angle adjustments, etc., are hard to visualize for the 
engineer, and their impact on the tooth form can be drastic.

Thus the gear engineer’s toolkit should include a method 
for generating a 3D model of a bevel gear, as dependency 
upon CAD for the general engineer is rapidly increasing. Many 
application engineers are demanded to provide 3D models to 
their customers. These customers then utilize their CAD sys-
tem to validate fits and clearances between components in 
their systems. Gears should not be left out of this analysis. 
Advancements in 5- and 6-axis machining of gears are rapidly 
approaching the precision and capability of dedicated gear gen-
erating machines; most of these machining centers require a 3D 
model for programming. If the application engineer provides 

a fully developed gear model to the customer, the 5- or 6-axis 
machining techniques may become very attractive. For this case 
alone, many gear companies opt out of providing models of 
their designs.

Background
The method outlined in AGMA 929-A06 — Calculation of Bevel 
Gear Top Land and Guidance on Cutter Edge Radius — describes 
how to calculate the top land thickness for a bevel tooth at spe-
cific points of interest; these points of interest are at the toe, 
mean, heel, and the point-of- involute lengthwise curvature.

Reasons regarding the purpose for these calculation points are 
beyond the scope of this document. The formulas inside AGMA 
929 can be generalized so that a set of equations can be devised 
to calculate the normal circular tooth thickness anywhere along 
the profile and length of the tooth.

Why this method is approximate. Given, as stated, that the 
geometry of a spiral bevel gear is mathematically complicated, 
the machine settings used to create a spiral bevel gear — whether 
using face milling or face hobbing — adjust the final flank form 
of the teeth. A thorough understanding of the machine settings 
and motions is necessary to achieve an accurate tooth model. 
AGMA 929-A06 uses the technique of a virtual spur gear to 
approximate the profile of a bevel tooth in the normal plane, 
without knowing the motions of the machine generating the 
final form. In doing so, the tooth thicknesses can be calculated 
quite simply using traditional methods for spur gears.

The virtual spur gear technique assumes that the tooth form 
will follow an involute in the profile direction in the normal 
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plane. This is only a close approximation to the true form of 
a spiral bevel tooth. Most spiral bevels follow the octoid tooth 
form, which is similar — but not identical — to the involute 
tooth form found on most cylindrical gears.

What is missing in AGMA 929-A06 to complete a model. A 
generalized set of equations can be produced from the content 
of AGMA 929-A06 to calculate the normal tooth thicknesses 
of a bevel tooth anywhere in the profile or lengthwise direction. 
The purpose of this document is to fill in the gaps of AGMA 
929-A06 so that a model can be generated. The majority of the 
content of this document pertains to how the normal tooth 
thicknesses are oriented in three dimensions and resolves these 
thicknesses into an array of Cartesian coordinates. (See Figure 1 
for a visual depiction of the calculation method described with-
in this document.) Additional information regarding the termi-
nology described within the figure is in the subsequent sections.

This method’s shortcomings. Enough has been presented 
to illuminate the reader as to why this method creates only an 
approximate method, but there are additional shortcomings 
worth mentioning. This method does not currently address the 
root fillet. The coordinates calculated in this method are strictly 
points following the involute curve that describes the approxi-
mate flank form. Coordinates for the root fillet are beyond the 
scope of this document.

The other major shortcoming is that all subsequent formulas 
are for spiral bevel gears — without a hypoid offset. Additional 
provisions would need to be made to generalize the formulas to 
account for hypoids.

Coordinate System Definition
All bevel gears are designed using a reference right cone called 
the “pitch cone.” The pitch cone is used as a basis for describ-
ing all other geometric entities of the bevel gear. Since describ-
ing the motions of the generating process in three dimensions 
would be hard to visualize or comprehend, the general prac-
tice is to un-wrap the surface of the pitch cone into a tangent 
plane — or “pitch plane.”

The point at the top of the pitch cone is called the “pitch 
apex.” The pitch apex is significant because the axes of both gear 
and pinion intersect at this point. Figure 2 displays the pitch 
cone, the pitch plane unwrapped, and also describes the global 
Cartesian coordinate system, CG. Figure 2 also shows the pitch 
cone sectioned through the YZ plane. This describes the defini-
tion of the pitch angle, Γ, and the face width, F — of a part. The 
global coordinate system follows the right-hand rule and its ori-
gin is located at the pitch apex of the member being modeled.

Basic Generation
The majority of all generated spiral bevel gears are manufac-
tured in one of two processes, i.e. — face milling or face hob-
bing; both manufacturing methods have advantages and disad-
vantages. For the purposes of this method, a brief understand-
ing of the generating method utilized during these processes is 
necessary to realize the 3D model.

Face milling. The face milling manufacturing method 
employs a circular, cup-shaped cutting tool moving in a timed 
relationship with the workpiece to roll through the gear blank 
and generate an individual slot. The cutter is then withdrawn, 

Figure 1 � Visual depiction of calculation method.

Figure 2 � Pitch cone.

Figure 3 � Generating triangle in pitch plane for face milling.
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the work is indexed to the location of the next slot, and the pro-
cess repeated. See Figure 3.

Figure 3 displays three instances of the cutter as it passes 
through the workpiece; these points are at the toe, mean, and 
heel of the crown gear. The path of the cutter sweeps a circu-
lar arc in the lengthwise direction, with the same radius as the 
radius of the cutter, Rc. The axis of the crown gear, Cg, is known 
as the machine center. The local coordinate system for the pitch 
plane is located at the machine center. Xpp correlates to X and 
Ypp lies along the line describing Ao in Figure 2.

The cutter axis, Cc. This location can be found by:
(1)

V = Rc cos ψm
(2)

H = Am − Rc sin ψm
(3)

Cc = (V, H)

The sign of the vertical term, V, may either be positive or neg-
ative, depending on the hand of spiral to be modeled. Figure 3 
shows a right-hand member (use negative value for V when cal-
culating left-hand members). The cutter sweep angle, θr, is nec-
essary to determine how much rotation is used during the cut-
ting process. When calculating points to model the gear tooth, 
these will be the endpoints of the working portion of the cutter 
path.

(4)

S = √V2 + H2

(5)

θr = cos-1 [S2 + Rc
2 − Ao

2]− cos-1[S2 + Rc
2 − Ai

2]2S Rc 2S Rc
(6)

θro = cos-1 [S2 + Rc
2 − Ao

2]− cos-1[S2 + Rc
2 − Am

2]2S Rc 2S Rc

(7)
θri = θr − θro

Discrete points can be calculated along the cutter sweep on 
the pitch plane. Using the general parametric formulas for a cir-
cle, the solution for a point, p, along the cutter path is:

(8)
px(t) = V + Rc cos t

(9)
py(t) = V + Rc sin t

Where t is a parameter that has the following ranges:
For left-hand members,

(10)
π + ψm − θri ≤ t ≤ π + ψm − θro

For right-hand members,
(11)

2π + ψm − θri ≤ t ≤ 2π + ψm − θro

This cutter path can be broken into as many discrete sections 
as desired.

Face hobbing. The face hobbing manufacturing method is 
a continuously indexing process. The cutting tool has groups 
of staggered blades; the workpiece moves in a timed relation-
ship with the cutter so that a group of blades in the cutter passes 
through a slot of the workpiece. The face hobbing method gen-
erates an extended epicycloidal shape in the lengthwise direc-
tion. See Figure 4. for a detailed layout of the face hobbing gen-
erating triangle.

Since the lengthwise shape of a face hobbed part creates an 
extended, epicycloidal shape, a little trigonometry is necessary 
to calculate the discrete points along the path created by the cut-
ter.

The crown gear tooth count,
(12)

Nc =
N

sin Γ
The lead angle of the cutter,

(13)

ν = sin-1 [ Am Ns cos ψm]Rc Nc

The first auxiliary angle,
(14)

λ = π − ψ+ ν
2

The center distance from crown gear center to cutter (Radial),
(15)

S1 = √Am
2 + Rc

2 − 2Am Rc cos λ
The second auxiliary angle,

(16)

η = cos-1 [Am cos ψm (Nc + Ns)]S1Nc

The second roll angle,
(17)

φ2 = π − η1 − ψm − λ

The auxiliary roll angle,
(18)

θrh = π − ν + φ22

The radius of the roll circle,
(19)

ρ2 =
Rc cos ν
cos θrh

The radius of the primary circle,
(20)

ρ2 = S1 − ρ2

The first roll angle (assuming rolling without sliding),
(21)

φ1 = φ2
ρ2
ρ1

Figure 4 � Generating triangle in pitch plane for face hobbing.

70 GEAR TECHNOLOGY  |  March/April 2015
[www.geartechnology.com]

technical



Now that the dimensions of the cutting cycle’s epicycloid, 
the cutter path, can be calculated, it would be very difficult to 
determine the angle of sweep that the cutter makes during the 
generating process because the cutter axis does not remain sta-
tionary during the cutting cycle. The face width of the bevel gear 
being modeled will be subdivided into discrete portions; the roll 
angles need to be recalculated for each discrete location indi-
vidually.

The second roll angle as a function of cone distance,
(22)

φp2 (Aμ) = cos-1 [S1
2 + Rc

2 − Aμ
2 ]2S1Rc

Where,
(23)

Ai ≤ Aμ ≤ Ao

The first roll angle as a function of cone distance,
(24)

φp1 (Aμ) = φp2 (Aμ)
ρ2
ρ1

The local Cartesian coordinates describing a point, p, along 
the cutter sweep path can be calculated.

(25)
px = −Rc sin (φp1 + φp2) + (ρ1 + ρ2) sin φp1

(26)
py = −Rc cos (φp1 + φp2) + (ρ1 + ρ2) cos φp1

Wrapping the Pitch Plane
The pitch plane is a tangent plane to the lateral surface of a right 
cone. This cone, as described earlier, is the “pitch cone.” The 
diagrams take into account the set-up of the machine, the cut-
ter size, and the motion of the cutter. Rotation of the workpiece 
also needs to be accounted for; this is accomplished by wrap-
ping the pitch plane around the pitch cone. This transforms the 
local coordinates calculated for the cutter sweep path into global 
coordinates. These points in the global coordinates will define 
the center of a tooth slot. The following formulas will transform 
a point, p, from the local XppYpp plane to the global Cartesian 
coordinate system, CG.

The first step is to determine the location of the point in the 
global Z axis direction,

(27)

zp = √px
2 + py

2 cos Γ

Calculate the rotation angle that the point will wrap around 
the cone,

(28)

θp = 1 tan−1 px
sin Γ py

Calculate the radius of the cone at location, zp,
(29)

Rp = zp tan Γ

Convert the cylindrical coordinates for the wrap point into 
global Cartesian coordinates.

(30)
xp = Rp cos θp

(31)
yp = Rp sin θp

Therefore, all the local cutter positions can be wrapped and 
transformed into the global Cartesian coordinate system.

Calculating Local Cutter Coordinate System
Since AGMA 929 effectively calculates the normal circular tooth 
thicknesses at a specific spot along the cutter path, the next step 
is to determine the correct orientation of the normal plane. A 
complete coordinate system will be oriented to have the xnyn 
plane normal to the cutter path, with the origin at each global 
coordinate of the cutter path calculated previously; this coordi-
nate system will be called Cn.

Tangent axis, zn. The tangent axis is defined by a vector that is 
tangent to the cutter sweep path at the location of the wrapped 
point. There are a couple of options for calculating this tan-
gent vector. One could calculate the first derivative of the cut-
ter sweep path formulas for both face milling and face hobbing 
so that the slope anywhere along that path can be predicted. 
Once that is accomplished a vector can be constructed in three 
dimensions to describe this tangent axis.

Since many assumptions are made throughout this method, 
the simplest method for calculating an approximate tangent 
vector is using finite difference; the finite difference method is 
described in the following equation:

(32)

f '(x) = lim Δx—>0( f (x + Δx) − f (x) )Δx

It is difficult to determine the correct size of Δx that will 
approximate the tangent close enough for this method. Since 
the cutter sweep path is smooth and continuous for all locations 

Figure 5 � Normal view to pitch plane displaying wrap point. Figure 6 � Definition of a wrapped point’s local coordinate system.
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along the arc, it is possible to quantify the error of our approxi-
mation using a Taylor expansion. This is beyond the scope of 
this document, but is mentioned here for further exploration.

The practical approach to applying the finite difference meth-
od is to calculate a neighboring wrapped point along the cutter 
sweep path for each wrapped calculation point. A vector can 
then be defined by passing through both sweep path points. As 
the points become closer and closer the vector connecting the 
two points approaches a tangent line.

Normal axis — yn. The normal vector is defined as a vector 
radiating perpendicularly from the surface of the right cone at 
the wrapped point location (Fig. 6). The normal vector at wrap 
point p = (px, py, pz) can be calculated by the following equation:

(33)
yn = (2px cos2 Γ, 2py cos2 Γ, − 2pz sin2 Γ)

A brief derivation will follow to explain the calculation of the 
normal axis. The general function of a right cone,

(34)
C (x, y, z) = (x2 + y2) cos2 Γ − z2 sin2 Γ

A gradient, u, is always normal to a function when,
(35)

u = uxex + uyey + uzez

Where,
(36)

ex = <1, 0. 0> (37)
ey = <1, 0. 0> (38)
ez = <1, 0. 0>

Let,
(39)

u (x, y, z) = x2 cos2 Γ + y2 cos2 Γ − z2 sin2 Γ
Therefore,

(40)

u = <2x cos2 Γ, 2y cos2 Γ − 2z sin2 Γ>
The cross vector will complete the definition of the local 

Cartesian coordinate system. This vector is calculated by taking 
the cross product of the tangent vector and the normal vector.

(41)
xn = zn yn

After calculating all the vector directions for the local coordi-
nate system, all three of the vectors should be normalized.

Normal Circular Tooth Thickness Calculations
Generalizing AGMA 929-A06. As previously discussed AGMA 
929-A06 utilizes the technique of converting the spiral bevel 
gear tooth to a virtual spur gear tooth to calculate the top lands 
at the toe, mean, and heel; the equations presented in AGMA 
929-A06 are unique for each of these points of interest. General 
equations can be derived from AGMA 929-A06 so that the 
tooth thickness can be calculated anywhere along the profile 
and lengthwise direction. The generalized formulas for the con-
version to a virtual spur gear are presented here (Fig. 7). Also, 
a handful of helpful formulas for calculating some spiral gear 
tooth geometry with respect to cone distance, Aμ, are developed. 
The cone distance range variable must correlate to the cone dis-
tances first chosen in the cutter path sections.

The notation in this section utilizes the terminology as if the 
member being modeled is the gear. Unless specifically specified 

the gear terminology should be replaced with pinion terminol-
ogy in the formulas if the pinion is the part being modeled.

Spiral angle for face milling with respect to cone distance,
(42)

ψ (Aμ) = sin-1 2Am Rc sin ψm − Am
2  + Aμ

2

2Aμ Rc

Generating angle for face hobbing with respect to cone dis-
tance,

(43)

q (Aμ) = cos-1 Aμ
2 + S1

2 − Rc
2

2Aμ S1

Spiral angle for face hobbing with respect to cone distance,
(44)

ψ (Aμ) = tan-1 Aμ − Q cos q (Aμ)
Q sin q (Aμ)

Slot width with respect to cone distance for the gear member,
(45)

WG (Aμ) = W'e [1 − Aμ cos ψ (Aμ) ] + Aμ [tmP cos ψ (Aμ)] −
Am cos ψm Am

[Aμ cos ψ (Aμ) bG (tan Φ1 − tan Φ2)] + Aμ cos ψ (Aμ) B +Am cos ψm Ao cos ψ (Ao) cos 
(Am − Aμ)(tan Φ1 − tan Φ2)  tan ξ

Slot width with respect to cone distance for the pinion member,
(46)

WP (Aμ) = Aμ cos ψ (Aμ) pn − Σbμ (tan Φ1 − tan Φ2) − WG (Aμ) +Am cos ψm

Aμ cos ψ (Aμ) B
Ao cos ψ (Ao) cos 

Normal pitch radius with respect to cone distance (substitute 
proper pitch diameter and pitch angle for member to model),

(47)

rN (Aμ) = D Aμ

2 cos Γ cos2 ψm Ao

Normal base radius with respect to cone distance, concave,
(48)

rbN1(Aμ) = rN (Aμ) cos Φ1

Normal base radius with respect to cone distance, convex,
(49)

rbN2(Aμ) = rN (Aμ) cos Φ2

Figure 7 displays the base radii graphically. The value of rbN1 
and rbN2 are shown as the same value because the pressure angle 
of the concave and convex flanks are the same. This is typical 
but not mandatory for bevel gears without a hypoid offset.

Normal pinion circular tooth thickness at pitch line with 
respect to cone distance,

(50)

tNP (Aμ) = bG (Aμ)(tan Φ1 − tan Φ2) − WG (Aμ) − Aμ cos ψ (Aμ) B
Ao cos ψ (Ao) cos 

Figure 7 � Definition of the geometry of the virtual spur gear in the 
normal plane.
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Normal gear circular tooth thickness at pitch line with respect 
to cone distance,

(51)

tNG (Aμ) = bP (Aμ)(tan Φ1 − tan Φ2) + WG (Aμ) − Aμ cos ψ (Aμ) B
Ao cos ψ (Ao) cos 

Normal working radius with respect to cone distance,
(52)

rwN (Aμ) = rN (Aμ) + w
Where

w is a range variable for calculating the working radius. The 
valid range for w is,

(53)
-b (Aμ) ≤ w ≤ a (Aμ)

Pressure angle at working radius with respect to cone dis-
tance, concave,

(54)

Φ1w (Aμ) = cos-1 rbN1 (Aμ)
rwN (Aμ)

Pressure angle at working radius with respect to cone dis-
tance, convex,

(55)

Φ2w (Aμ) = cos-1 rbN2 (Aμ)
rwN (Aμ)

Normal circular tooth thickness for pinion at working radius 
with respect to cone distance,

(56)

twNP (Aμ) =[ tNP (Aμ) + inv Φ1 − inv Φ1w + inv (−Φ2) − inv Φ2w] rwN (Aμ)rN (Aμ)

Normal circular tooth thickness for gear at working radius 
with respect to cone distance,

(57)

twNG (Aμ) =[ tNG (Aμ) + inv Φ1 − inv Φ1w + inv (−Φ2) − inv Φ2w] rwN (Aμ)rN (Aμ)

Certain designs have the dedendum plunge below the virtual 
gear’s base radius; when this occurs, the normal circular tooth 
thickness will become a complex number. Only the real portion 
of this value should be used when recording the answers.

Converting thicknesses to coordinates. The tooth thickness 
calculations shown earlier in Generalizing AGMA 929-A06 is a 
circular tooth thickness positioned at a specified working radi-
us. The local coordinate system has the origin located where the 
pitch radius crosses the center of the tooth thickness (Fig. 7). For 
each working radius used the calculated circular tooth thick-
nesses need to be converted to chordal thicknesses before they 
can be recorded as Cartesian coordinates.

Normal chordal tooth thickness for pinion at working radius 
with respect to cone distance,

(58)

twcNP (Aμ) = 2rwN (Aμ) sin twNP (Aμ)
2rwN (Aμ)

Normal chordal tooth thickness for gear at working radius 
with respect to cone distance,

(59)

twcNG (Aμ) = 2rwN (Aμ) sin twNG (Aμ)
2rwN (Aμ)

Now that the circular thickness has been converted to a 
chordal thickness, a small correction is needed to the location of 
the thickness in the profile direction (along yn). Figure 8 depicts 

this correction and provides a visual explanation why this cor-
rection is required. The working radius is equal to the pitch 
radius in the figure, and its relative radius has been decreased to 
exaggerate the size of the correction in the figure.

Pinion shift factor at working distance with respect to cone 
distance,

(60)

ywsP (Aμ) = rwN (Aμ) [1 − cos twNP (Aμ) ]2rwN (Aμ)

Gear shift factor at working distance with respect to cone dis-
tance,

(61)

ywsG (Aμ) = rwN (Aμ) [1 − cos twNG (Aμ)]2rwN (Aμ)

Local Cartesian coordinates for the pinion with respect to 
cone distance,

(62)

pt1P = ( twcNP (Aμ), w − ywsP (Aμ))2
(63)

pt2P = ( twcNP (Aμ), w − ywsG (Aμ))2
Local Cartesian coordinates for the gear with respect to cone 

distance,
(64)

pt1G = ( twcNG (Aμ), w − ywsG (Aμ))2
(65)

pt2G = (− twcNG (Aμ), w − ywsG (Aμ))2

Transform the Local Normal Tooth Thicknesses to 
Global
To this point all the tooth thickness points are defined relative 
to a local coordinate system. The global location for each one 
of these local coordinate systems are known, but to complete 
the model, all points describing the tooth flanks must be known 

relative to the global coordinate system. This is accomplished 
using a coordinate transformation matrix, CT:

(66)
CT = Cn CG

Where,

CG is a 3×3 identity matrix that describes the global coor-
dinate system. See Coordinate System Definition for a more 
detailed explanation. Once a vector, Vp, relative to the local 

Figure 8 � Shift factor when converting 
circular to chordal thicknesses 
(pinion shown).

ywsP (Aµ)

twNP (Aµ)

rwn (Aµ)
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coordinate system, Cn, is constructed that passes through a cal-
culated tooth flank point, the transformation can be calculated:

(67)
VG = CT VP

Where,

VG is a vector that passes through the exact same flank point, 
but is described relative to the global coordinate system.

Results
Now that the method is complete, the next logical step is to 
determine just how accurate this model is when compared to 
the theoretical geometry of a spiral bevel gear. This method is 
strictly approximate; many caveats have been discussed in the 
previous sections. To accomplish a comparison between this 
method and a theoretical part there must be a reliable standard 
by which to compare it. Comparing the calculated points from 
this method with a physical, cut part would introduce poten-
tial variations from the manufacturing process. For this reason 
alone it was decided to compare the calculated points to a differ-
ent, yet trusted, mathematical model. Gleason Works has devel-
oped a commercial software package — T900 — that generates 
an accurate point cloud describing the geometry of the tooth 
flank and fillet condition of bevel gears and pinions. While the 
purpose of this software is far greater than just the generation 
of a point cloud, the other functionality is beyond the scope of 
this document. The point cloud produced from T900 can be 
imported into a CAD package to assist in the generation of the 

exact geometry produced by the machine settings 
for a particular design. The point cloud represents 
the standard as to which this method is compared.

The member chosen for this analysis is a left-hand 
spiral bevel gear generated by face mill completing.

Some of the basic geometry has been provided in 
Table 1, but the exact details of the geometry are rela-
tively unimportant. An angular set was chosen as this 
method has no shaft angle restrictions.

The output from T900 is a point cloud that 
describes the flanks of a spiral bevel or hypoid gear 
set. A gear tooth is divided into a 13- (profile) by-10 
(length) grid for each flank; therefore 260 unique 
points describe each tooth. For this analysis these 
discrete points were bridged together using Siemens 
NX 8.5 CAD software. The point cloud was con-
nected in the profile and lengthwise direction with 
curves generated by a cubic, polynomial regression. 
Once the lattice of curves is generated the curves 
are used as ribs to create a bi-cubic surface. Figure 
9 shows the tooth surface generated from the T900 
point cloud in gray.

The face width of the part is broken into 10 seg-
ments for the calculation; addendum and dedendum 

are also broken into 10 segments. The part being modeled has a 
short addendum and long dedendum. Figure 10 shows the cal-
culated points and solid model sectioned through the normal 
plane (Fig. 9) of a tooth. The calculated points go beyond the 
root line of the model because the calculated points were gen-
erated to the base circle radius of the virtual spur gear. When 
doing the comparison the last four points of each profile will be 
omitted, as they fall below the root fillet tangency point.

A linear measurement normal to the T900 surface to each cal-
culated point is used to measure the deviation between the cal-
culated points and the surface. The normal tooth thicknesses 
at the toe and heel will be omitted in the comparison, as these 
points are beyond the bounds of the T900 surface. The abso-
lute values of the measured deviations for each flank are given 
(Tables 2 and 3).

The red values are measured deviations that exceed one one-
thousandth of an inch. Overall, the results depict a model that 
very closely approximates the flanks predicted by the Gleason 
Works T900 software. The average deviation for each normal 
cross-section in the lengthwise direction is displayed in Table 4.

Conclusion
The purpose of this presentation is to describe a procedure for 
calculating a very close approximation of the geometry of a spi-
ral bevel gear tooth.

This method is built upon the techniques and formulas 
described in AGMA 929-A06.

The second portion of the document compared the results of 
this method with the results from a proven Gleason software 
package.

The results are extremely close.
Many models have been generated since this original case 

study, and the subsequent models correlate well with the geom-
etry predicted by Gleason software.

Table 1 � Basic spiral geometry of model
Pinion Gear

Number of teeth 11 57
Face width 2.0 2.0

Diametral pitch 4.0
Shaft angle Non 90°

Figure 10 � Calculated points in the normal plane.

Figure 9 � Calculated points overlaid on a tooth modeled using Gleason T900.
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The model described throughout this docu-
ment should not be used for advanced analysis 
(i.e., finite element or the like), as the models 
created from this method do not have any mod-
ifications to the tooth flanks to adjust or opti-
mize the tooth contact pattern.

At present AGMA’s Bevel Gear Committee 
is working on revising the formulas in AGMA 
929-A06 to adopt the generalized formulas 
described here. The technique of utilizing gen-
eralized formulas will expand the capabilities of 
AGMA 929. 
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Table 2 � Concave flank measured deviations, thousandths of an inch
Heel Toe

0 1 2 3 4 5 6 7 8 9 10
Topland 0 0.927 0.938 0.949 0.963 0.969 0.956 0.927 0.899

1 0.249 0.214 0.188 0.174 0.154 0.109 0.035 0.046
2 0.305 0.258 0.223 0.201 0.173 0.121 0.042 0.047
3 0.358 0.302 0.257 0.226 0.189 0.130 0.045 0.049
4 0.411 0.343 0.289 0.249 0.205 0.138 0.045 0.054
5 0.461 0.384 0.319 0.270 0.218 0.143 0.043 0.061 0.158
6 0.051 0.422 0.348 0.289 0.230 0.146 0.038 0.070 0.171
7 0.558 0.459 0.375 0.307 0.241 0.148 0.032 0.080 0.186
8 0.603 0.494 0.401 0.323 0.249 0.148 0.025 0.092 0.201
9 0.647 0.528 0.425 0.337 0.257 0.147 0.018 0.104 0.218

Pitch 10 0.689 0.559 0.447 0.350 0.262 0.146 0.010 0.116 0.235
11 0.839 0.671 0.522 0.396 0.268 0.125 0.039 0.205 0.360
12 0.952 0.744 0.555 0.381 0.215 0.024 0.186 0.387 0.575
13 1.023 0.077 0.526 0.299 0.113 0.098 0.324 0.546 0.765
14 1.049 0.759 0.523 0.350 0.015 0.291 0.644 1.046 1.345
15 1.024 0.423 0.298 0.190 0.418 0.754 0.950 0.467 1.259
16 0.913 0.000 0.052 0.103 0.539
17
18
19

Root 20

Table 3 � Convex flank measured deviations, thousandths of an inch
Heel Toe

0 1 2 3 4 5 6 7 8 9 10
Topland 0 0.342 0.344 0.326 0.307 0.313 0.373 0.377

1 0.296 0.327 0.340 0.332 0.320 0.334 0.371 0.405
2 0.268 0.311 0.334 0.335 0.331 0.353 0.397 0.436
3 0.238 0.292 0.325 0.336 0.341 0.370 0.421 0.465
4 0.206 0.271 0.315 0.335 0.348 0.385 0.442 0.493 0.538
5 0.171 0.248 0.302 0.332 0.354 0.398 0.462 0.518 0.566
6 0.135 0.222 0.288 0.328 0.358 0.409 0.479 0.542 0.593
7 0.096 0.195 0.271 0.321 0.360 0.419 0.495 0.565 0.619
8 0.056 0.166 0.252 0.312 0.360 0.427 0.510 0.586 0.643
9 0.013 0.135 0.232 0.302 0.359 0.433 0.523 0.605 0.667

Pitch 10 0.031 0.102 0.210 0.289 0.356 0.438 0.534 0.623 0.690
11 0.231 0.055 0.094 0.212 0.318 0.442 0.581 0.702 0.817
12 0.460 0.243 0.054 0.102 0.246 0.402 0.562 0.729 0.864
13 0.710 0.467 0.254 0.042 0.140 0.328 0.542 0.746 0.938
14 0.983 0.690 0.416 0.186 0.230 0.281 0.566 0.705 0.840
15 1.285 0.911 0.615 0.389 0.158 0.008 0.101 0.526 1.220
16 1.559 1.321 1.114 0.765 0.403
17
18
19

Root 20

Table 4 � Average deviation, thousandths of an inch
Flank Heel Toe

0 1 2 3 4 5 6 7 8 9 10
Concave 0.695 0.486 0.394 0.318 0.277 0.277 0.213 0.267 0.498
Convex 0.510 0.370 0.339 0.308 0.299 0.359 0.458 0.564 0.750
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