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This paper presents the geometric design of hypoid gears with involute gear teeth. An 
overview of face cutting techniques prevalent in hypoid gear fabrication is presented. Next, 
the specification of a planar involute rack is reviewed. This rack is used to define a variable 
diameter cutter based upon a system of cylindroidal coordinates; thus, a cursory presentation 
of cylindroidal coordinates is included. A mapping transforms the planar involute rack into a 
variable diameter cutter using the cylindroidal coordinates. Hypoid gears are based on the 
envelope of this cutter. A hypoid gear set is presented based on an automotive rear axle.

Background
Cylindrical gearing is the simplest of all gear types 
and is used more than any other. Bevel and hypoid 
gear manufacturing analysis entail spatial, geometric 
relations, whereas spur and helical gear manufactur-
ing analysis entail mostly planar geometric relations. 
Existing methods of manufacture for different gear 
forms are type-specific and generally unrelated. For 
example, the machines used to produce hypoid gears 
cannot be readily used or for fabricating spur cylin-
drical gears. The methods of manufacture associated 
with bevel and hypoid gears do not allow these gears 
to be treated with the same type of geometric con-
siderations that currently exist for cylindrical gears. 
To illustrate, spur cylindrical gears are helical gears 
with a zero helix angle; both gear types can be pro-
duced using the same machine. But spur hyperboloi-
dal gears cannot be readily produced using existing 
fabrication techniques for spiral hyperboloidal gears. 
The majority of hypoid and bevel gear manufacture 
today is the focus of The Gleason Corporation and 
Klingelnberg-Oerlikon. The following three compa-
nies provide the machines and machine tools neces-
sary for the production of hypoid gears:
•	 The Gleason Works (www.gleason.com)

Klingelnberg-Oerlikon (www.klingelnberg.com)
•	 Yutaka Seimitsu Kogyo LTD (http://www.yutaka.

co.jp/Y_hp6/default2.htm)
Depicted in Figure 1 are circular face cutters used 

today for fabricating spiral bevel and hypoid gear ele-
ments. Certain limitations of existing crossed-axis gear technol-
ogy can be realized by focusing on Figure 2. The theoretical or 
ideal shape of these crossed-axis gears is the “hour-glass” — or 
hyperboloidal — shape shown. Current design and manufactur-
ing techniques approximate a portion of the hour-glass shape by 
a conical segment, as shown. This approximation results in the 
following restrictions:
•	 Face width
•	 Minimum number of teeth
•	 Spiral angle
•	 Pressure angle

These restrictions in turn limit candidate gear designs. Face 
cutting further places restrictions on the above limitations, 

together with the gear ratio. An overview of face cutting meth-
ods for hypoid gear design and manufacture is provided by 
Shtipelman (Ref. 1); Stadtfeld (Ref. 2); Wu and Lou (Ref. 3); 
Wang and Ghosh (Ref. 4); and Litvin and Fuentes (Ref. 5). 
Radzevich (Ref. 6) and Kapelevich (Ref. 7) provide updated 
approaches for gear design and manufacture. Preliminary inves-
tigations into the “ideal” kinematic geometry of spatial gearing 
have been recognized by Xiao and Yang (Ref. 8); Figliolini et 
al. (Ref. 9); Hestenes (Ref. 10); and Ito and Takahashi (Ref. 11). 
Grill (Ref. 12) uses an “equation of meshing” to establish a rela-
tion between the curvature of one body to that of another body 
and applies his results in the context of gearing. Baozhen et al 
use Lie Algebra for a coordinate-free approach akin to screw 
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Figure 1 � Face cutting.

Figure 2 � Conical segments for hypoid gears.
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theory (Ref. 13). Phillips (Ref. 14) 
proposes a qualitative approach 
for point contact of hypoid “invo-
lute” teeth. A hyperboloidal cut-
ter was proposed as part of a uni-
fied methodology for the analy-
sis, synthesis, and manufacture of 
generalized gear pairs (Ref. 15).

The manufacture of general-
ized gear elements is proposed by 
introducing a hyperboloidal or 
variable diameter cutter to mesh 
with a desired gear. An illustra-
tion of a hyperboloidal hob cutter and hypoid gear/work piece is 
depicted in Figure 3. The desired gear depends upon the cutter 
geometry along with its position and orientation relative to the 
gear. Two toothed bodies in mesh where the sum ѱpi + ѱpo of the 
spiral angles is non-zero is established to determine the cutter’s 
position and orientation relative to the gear element.

The most common occurrence where ѱpi + ѱpc ≠ 0 is for 
crossed cylindrical gears. The included angles αpi and αpc for 
cylindrical toothed bodies are zero, and the angle between the 
two axes $i and $c reduces to ѱpi + ѱpc = Σ. Meshing conditions 
where ѱpi + ѱpc ≠ 0 and αpi + αpc ≠ 0 are defined as crossed hyper-
boloidal gears. The I/O relationship for the meshing or generat-
ing cylindroid between two crossed hyperboloidal gears in mesh 
is identified by an “s” subscript and is uniquely defined as the 
swivel I/O relationship gs. Generating conditions are determined 
using gs, the swivel center distance Es, and the swivel shaft angle 
Σs.

Rack Coordinates
Introducing the rack as an intermediate step for defining a can-
didate cutter is based on its simplicity and usefulness in trans-
forming rotary motion into linear motion. Rack coordinates 
used to parameterize a gear tooth repeat each pitch Pd, thus, it 
is necessary to parameterize candidate rack tooth profiles for 
one pitch. The “r” subscript is used to designate that the indi-
cated variable is in regards to the rack. If the teeth are sym-
metric about a line through the center of the tooth, then candi-
date tooth profiles need to be specified only for one-half of the 
pitch Pd. The Cartesian coordinates (xr, yr) for the rack shown 
in Figure 4 are divided into three regions — 1) crest; 2) active 
region; and 3) fillet.

This is achieved by specifying the coordinates (xr, yr) for the 
active region according to a particular application. For exam-
ple, if zero errors in the I/O relationship g must be achieved 
for small changes in center distance E, then, as anticipated, the 
active profile becomes a straight line. Subsequently, the crest is 
determined by the “optimal” fillet of the generated gear blank. 
This occurs because the crest of the cutter determines the fil-
let of the generated blank. The fillet of the cutter is determined 
such that the crest of one gear pair does not interfere with the 
fillet of the mating gear.

The diametral pitch Pd is defined as the number of teeth per 
inch of pitch diameter for spur circular gears. For two toothed 
wheels in mesh, this leads to:

(1)

Pd =
Ni = No

2upi 2upo

Where
	 Ni	= Number of teeth on the input
	 upi	= Pitch radius of the input
	 No	= Number of teeth on the output
	 upo	= Pitch radius of the output

Recognizing that upi + upo = E, where E is the distance between 
the two axes of rotation, the diametral pitch Pd is expressed:

(2)

Pd = Ni + No
2E

The module md is used in the metric system, where:
(3)

md =  di = 1
Ni Pd

Such an expression for the tooth size is ingenious and is used 
to specify the addendum and dedendum height. The distance 
pn between adjacent teeth can also be expressed in terms of 
diametral pitch Pd. Two gears in mesh must have the same pn or 
normal pitch. In turn, this normal pitch can be resolved into a 
transverse pitch pt and an axial pitch pa. At this point it is con-

Figure 3 � Cutter and gear elements.

Figure 4 � The rack.
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venient to temporarily abandon this terminology and introduce 
the distance between adjacent teeth as the circular pitch cp with 
no indication as to whether it is the transverse, axial, or normal 
pitch.

A mapping is used to transform the rack coordinates (xr, yr) to 
polar gear tooth coordinates (uc, vc). This transformation can be 
envisioned as wrapping a rack onto a pitch circle with the desired 
pitch radius up. This transformation is the envelope of the rack as 
it meshes with a circle of radius up. Depicted in Figure 5 is a rack 
being wrapped onto a pitch circle with radius up.

Cylindroidal Coordinates
A system of curvilinear coordinates is used to parameterize 
the kinematic geometry of motion transmission between skew 
axes. These curvilinear coordinates are based upon the cylin-
droid determined by the two axes of rotation, $i and $o, and are 
referred to as cylindroidal coordinates. Cylindroidal coordinates 
consist of families of pitch, transverse, and axial surfaces. Pitch 
surfaces are specified in terms of the axes of rotation $i and $o. $i 
is the input axis (pinion) of rotation and $o is the output (ring) 
axis of rotation. Pitch surfaces are a family of ruled surfaces, and 
axodes are the unique pitch surfaces that depend upon a par-

ticular I/O relationship. For this reason, the pitch surfaces are 
referred to as the reference pitch surfaces.

A system of curvilinear coordinates (u, v, w) is used to 
describe spiral bevel and hypoid gears. The coordinates (u, v, w) 
used to parameterize these families of pitch, transverse, and 
axial surfaces are formulated using the cylindroid defined by 
the input and output axes of rotation. A design methodology 
for spatial gearing analogous to cylindrical gearing begins with 
the equivalence of friction cylinders. Figure 6 shows two such 
wheels along with candidate generators. The I/O relationship g 
defines which generator of the cylindroid is used to parameter-
ize the input and output friction wheels. These generalized fric-
tion surfaces are two ruled surfaces determined by the instan-
taneous generator. The transmission of motion between the 
two generally disposed axes $i and $o via two friction surfaces 
requires knowledge of the instantaneous generator. The location 
of the instantaneous generator relative to the two axes $i and $o 
depends upon:
•	 Distance E along the common perpendicular to axes of rota-

tion $i and $o
•	 Angle Σ between axes of rotation $i and $o
•	 Magnitude of the I/O relationship g

Motion transmission between the two skew axes $i and $o 
results in a combination of an angular displacement about the 
instantaneous generator and a linear displacement along the 
instantaneous generator. The ratio h of linear displacement to 
that of the angular displacement is the pitch associated with 
the instantaneous generator. The pitch hisa associated with the 
instantaneous generator is the instantaneous screw axis, or ISA.

A transverse surface is an infinitesimally thin surface used to 
parameterize conjugate surfaces for direct contact between two 
axes. Candidate generators for the reference pitch surface are 
determined by the generators of the cylindroid ($i; $o). Given g, 
each position angular vi and axial position wi define a unique 
point p in space. Allowing g to vary from -∞ to ∞, the point p 
traces a curve in space. Another value of the input position vi 
defines the same cylindroid. There is an angular displacement 
between these two cylindroids. It is this two-parameter loci of 
points p that compose the transverse surface. The Cartesian 
coordinates r for the single point p on the generator $ai are:

(4)
r = ui î + wi sin αi ĵ + wi cos αi k̂

Rotating the above curve r about the zi-axis an amount vi 
leads to:

(5)

r = [ cos vi sin vi 0 ] [ ui ]−sin vi cos vi 0 −wi sin αi

0 0 1 wi cos αi

Where
	 u	radius of hyperboloidal pitch surface (at throat)
	 v	angular position of generator on pitch surface
	 w	axial position along generator of pitch surface
	 α	angle between generator and central axis of pitch surface

The axial surface provides the relationship between succes-
sive transverse surfaces. For each value of vi, the axial surface 
is the loci of generators determined by g, where -∞ < g < ∞. The 
curves defined by holding two of the three parameters u, v, and 
w constant are coordinate curves. Two parameters used to define 

Figure 5 � Transforming or “wrapping” the rack onto the desired 
pitch circle.

Figure 6 � Two friction wheels for motion transmission between skew 
axes.
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a surface are the curvilinear coordinates 
of that surface: the pitch surface by vi and 
wi (ui = constant), the transverse surface by 
ui and vi (wi = constant), and the axial sur-
face by ui and wi (vi = constant). Depicted 
in Figure 7 are the pitch, transverse, and 
axial surfaces determined using cylindroi-
dal coordinates (ui, vi, wi). Three surfaces 
are used to describe the geometry of gear 
elements.

The curvilinear coordinates (uc, vc, wc) 
used to parameterize the proposed cutters 
are defined by introducing a cutter-cylin-
droid ($ci; $co). This enables cutters to be 
designed in pairs analogous to the design 
of gear pairs where two cutters are pro-
posed for the fabrication of spiral toothed 
bodies. One feature of the cutter cylin-
droid is that expressions involving the cut-
ters are obtained by simply changing the 
trailing subscripts in existing expressions 
involving the input gear from “i” to “c”. 
In order to minimize the notation neces-
sary to distinguish the input cutter from 
the output cutter, only a “c” subscript is 
used with no indication as to whether it 
is the input cutter or the output cutter. 
Implicit in the cutter designation will be an “o” subscript when 
describing the input gear. Likewise, when describing the output 
gear body, it will be assumed that associated with the cutter is an 
“i” subscript to identify that it designates the input cutter. The 
above reasoning is that two toothed bodies in mesh involve an 
input and an output body. The three possibilities being:
•	 Input gear body and an output gear body
•	 Input gear body and an output cutter
•	 Input cutter and an output gear body

The two twist axes $ci and $co are the two screws of zero 
pitch on the cutter cylindroid ($ci; $co). The generators $pc are 
determined by also introducing a cutter I/O relationship gc. 
Expressions for the radius uac and the angle αac are identical to 
those for uai and αai, except E, Σ, and g are replaced by Ec, Σc, and 
gc, respectively.

Hyperboloidal Cutter Coordinates
General hyperboloidal cutter elements are defined by intro-
ducing a mapping within a system of cylindroidal coordinates. 
The purpose of this mapping is to utilize knowledge of conju-
gate curves for motion transmission between parallel axes and 
apply it to conjugate surfaces for motion transmission between 
skew axes. A visual representation of this mapping is shown in 
Figure 8. There exists a single generator within a system of cur-
vilinear coordinates as part of the cylindroid ($i; $o) that is coin-
cident with each point (u, v). For an arbitrary axial position wc 
along this generator, a transverse surface exists. Each value (u, v) 
defines a different generator. The distance wc along each of these 
generators from (u, v) to a single transverse surface is constant. 
It is the image of these datum points (u, v) upon a given trans-
verse surface that defines the mapping. This mapping is valid for 
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Figure 7 � Pitch, transverse, and axial surface for uniform motion transmission.

Figure 8 � Mapping of planar gear profile onto transverse surface.
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any type of cutter tooth profile (viz., involute, cyclodial, circular-
arc, and convuloid).

The planar coordinates (u, v) used to define conjugate curves 
are polar coordinates where v is an angular position about the 
“z-axis” and u is the corresponding radius. Use of coordinates 
(u, v) to specify conjugate curves in the plane are fashioned 
such that conjugate surfaces in space are obtained using the cyl-
indroidal coordinates (uc, vc, wc). This is achieved by assigning 
a value to the axial position wc and defining uc ≡ uc and vc ≡ v. 
Cutter coordinates must be “scaled” to satisfy the appropriate 
transverse pitches. Such scaling is illustrated in Figure 9 and is 
obtained by recognizing that the virtual length of the striction 
curve spc is the component of its length perpendicular to the 
tooth. This scaling is performed prior to the “wrapping” of the 
rack onto the circular disk depicted in Figure 3 and depends on 
the diametral pitch. The diametral pitch Pd used to parameterize 
the cutter teeth depends on the size or radius of the input and 
output cutter. The x-scaling or stretch along the x-axis is shown 
in Figure 9 and depends on the cone angle αpc; thus, for an arbi-
trary angle vc, the corresponding parameter xr used to evaluate 
the expressions for the tooth profile becomes:

(6)
xc = χx upc vc

Where
χx = cos αpc cos γpc

The angle apc = ypc at the throat (i.e., wc = 0). It is the diametral 
pitch at the throat that is used to specify the pitch of the cutter 
profiles. The cutter is expressed using the Cartesian coordinates 
(xc, yc, zc) as follows:

(7)

[ xc ]=[ cos vc sin vc 0 ] [ uc ]yc −sin vc cos vc 0 −wc sin vc

zc 0 0 1 wc cos vc

The image of the coordinates 
(xc, yc, zc) upon the transverse surfac-
es must account for the cutter spiral. 
Consequently, a transverse angular 
displacement Δvѱc is superimposed 
on the mapping as follows:

(8)

Γc = [ cos Δvѱc sin Δvѱc 0 ] [ xc]−sin Δvѱc cos Δvѱc 0 yc

0 0 1 zc

The cutter spiral depends on the ratio between the axial dis-
placement Δwѱc and the angular displacement Δvѱc. The dis-
placement Δvѱc is based on a constant lead for a given transverse 
surface and the spiral angles ѱc for each radii uc are different. 
Note that the displacement Δvѱc is based on the lead for the ref-
erence pitch surface and the spiral angles ѱc change for each 
radius uc.

Illustrative Example
This example presents a spiral hypoid gear set for motion trans-
mission between skew axes using Delgear software (Ref. 16). 
The shaft angle is 90° and the shaft offset is 25 mm. The speed 
ratio 3.27; 11 teeth on the pinion and 36 teeth on the ring gear. 
The face width is 35 mm, the axial contact ratio is 3.0 and the 
nominal spiral angle is 61°. The tooth profile is a standard invo-

Figure 11 � Input and output gears with involute teeth.

Figure 10 � Rack, transverse profile, hyperboloidal cutter.

Figure 9 � Scaling of tooth profile on cutter element.
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lute tooth profile. The normal pressure angle is 20°, the trans-
verse contact ratio is 1.25, the addendum constant is 1.0 and the 
dedendum constant is 1.2. The variable diameter cutter has three 
teeth and the nominal lead angle is 10°. Figure 10 shows the rack 
tooth, a transverse segment of the cutter, and a virtual model of 
the cutter. The gear pair is depicted in mesh in Figure 11.

Summary
Demonstrated is the specification of involute gear teeth on hyp-
oid gears. This process involves the specification of a classical 
involute rack, a mapping that transforms this rack to a planar 
circular profile. A system of cylindroidal coordinates is used to 
define hyperboloidal cutters. Another transformation is used 
to map the planar circular profile to a hyperboloidal cutter with 
suitable geometry for specifying general spiral bevel and hypoid 
gear pairs. An example of an automotive rear differential gear 
set is presented to illustrate the process. 
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