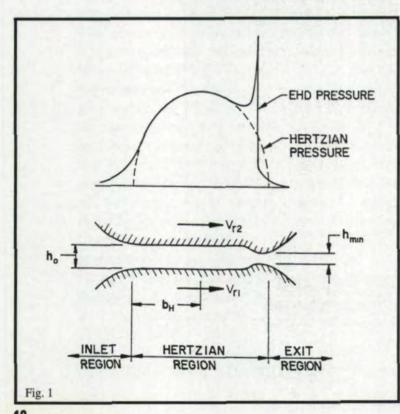
The Lubrication of Gears - Part II


Robert Errichello GEARTECH, Albany, CA

Introduction

What follows is Part 2 of a three-part article covering the principles of gear lubrication. Part 2 gives an equation for calculating the lubricant film thickness, which determines whether the gears operate in the boundary, elastohydrodynamic, or full-film lubrication regime. An equation for Blok's flash temperature, which is used for predicting the risk of scuffing, is also given.

Elastohydrodynamic Lubrication

Gear teeth are subjected to enormous contact pressures on the order of the ultimate tensile strength of hardened steel, yet they are quite successfully lubricated with oil films that are less

than one micrometer thick. This is possible because a fortuitous property of lubricants causes their viscosity to increase dramatically with increased pressure. Fig. 1 depicts the region of contact between mating gear teeth. It shows the shape of the elastically deformed teeth and the pressure distribution developed within the contact zone. The molecular adsorption of the lubricant onto the gear tooth surfaces causes it to be dragged into the inlet region of the contact, where its pressure is increased due to the convergence of the tooth surfaces. The viscosity increase of the lubricant caused by the increasing pressure helps to entrain the lubricant into the contact zone. Once it is within the high pressure, Hertzian region of the contact, the lubricant cannot escape because its viscosity has increased to the extent where the lubricant is virtually a rigid solid.

The following equation, from Dowson and Higginson¹ gives the miniumum film thickness that occurs near the exit of the contact.

Minimum film thickness:

$$hmin = \frac{1.63\alpha^{0.54}(\mu_o V_e)^{0.7}\rho_n}{(X_r W_N)^{0.13} Er^{0.03}}$$

The specific film thickness is given by

$$\lambda = \frac{hmin}{\sigma}$$

where

 σ = composite surface roughness

$$\sigma = (\sigma_1^2 + \sigma_2^2)^{1/2}$$

 $\sigma_1, \sigma_2 =$ surface roughness, rms (pinion, gear)

- μ_0 = absolute viscosity, Reyns (lb sec/ in²) Fig. 2 gives average values of viscosity versus temperature for typical mineral gear lubricants with viscosity index of 95.
- α = pressure-viscosity coefficient, (in²/ lb). The pressure-viscosity coefficient ranges from α = 0.5 x 10⁴ to α =2 x 10⁻⁴ in²/lb for typical gear lubricants. Data for pressure-viscosity coefficients versus temperture for typical gear lubricants are given in Fig. 3.

Er = reduced modulus of elasticity given by

$$Er = 2\left(\frac{1-v_1^2}{E_1} + \frac{1-v_2^2}{E_2}\right)^{-1}$$

where

 $v_1, v_2 \approx$ Poisson's ratio (pinion, gear) $E_1, E_2 =$ modulus of elasticity (pinion, gear)

pn = normal relative radius of curvature

$$bn = \frac{\rho_1 \rho_2}{(\rho_2 \pm \rho_1) \cos \psi_b}$$

$$\rho_1, \rho_2 = \text{transverse radius of curvature}$$

(pinion, gear)

$$\Psi_{\rm b}$$
 = base helix angle

$$V_{e} = V_{e} + V_{e}$$

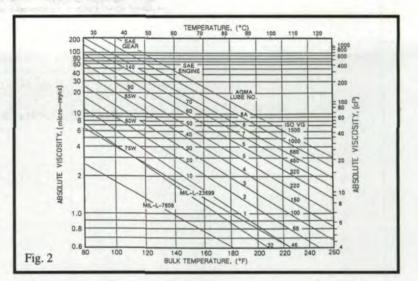
where

$$Vr_1, Vr_2 = rolling velocities given by$$

 $Vr_1 = \omega_1 \rho_1$
 $Vr_1 = \omega_2 \rho_1$

 $\omega_1, \omega_2 = angular velocities (pinion, gear)$

 $W_{N_r} \approx normal unit load given by$

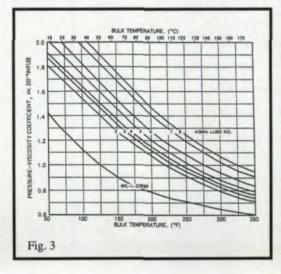

$$W_{Nr} = \frac{W_{Nr}}{Lmin}$$

where

 W_{Nr} = normal operating load Lmin = minimum contact length

Load Sharing Factor, X

The load sharing factor accounts for load sharing between succeeding pairs of teeth as influenced by profile modification (tip and/or



root relief) and whether the pinion or gear is the driver. Fig. 4 gives plots of the load sharing factors for unmodified and modified tooth profiles.

As shown by the exponents in the Dowson and Higginson equation, the film thickness is essentially determined by the entraining velocity, lubricant viscosity, and pressure-viscosity coefficient, while the elastic properties of the gear teeth and the load have relatively small influences. In effect, the relatively high stiffness of the oil film makes it insensitive to load, and an increase in load simply increases the elastic deformation of the tooth surfaces and widens the contact area, rather than decreasing the film thickness.

Blok's Contact Temperature

Blok's² contact temperature theory states that scuffing will occur in gear teeth that are sliding under boundary-lubricated conditions when the maximum contact temperature of the gear teeth reaches a critical magnitude. The contact temperature is the sum of two components, the bulk

Robert Errichello

is the principal in GEARTECH, a gear consulting firm in Albany, CA. His article reprinted here has won the STLE's 1990 Wilber Deutch Memorial Award for the best article on the practical aspects of lubrication. Mr. Errichello is a member of ASME, AGMA, and is a Registered Professional Engineer in the State of California.

MAY/JUNE 1991 19

	Nomenclature Table				
Symbol	Description	Units	Symbol	Description	Units
B _M	-thermal contact	1bf/[ins ^{0.5} °F]	Ve	-entraining velocity	in/s
M	coefficient		Vr ₁ ,Vr ₂	-rolling velocity	in/s
b _H	-semi-width of	in		(pinion,gear)	
	Hertzian contact		W _{Nr}	-normal operating	lbf
	band			load	
C	-constant (See	hp/gpm	WNr	-normal unit load	lbf/in
	Table 3.)	11 () (()) ()	Xw	-welding factor	
с _М	-specific heat per	1bf in/[lb °F]	X _r	-load sharing factor	2 2
d	unit mass -operating pitch	in	α	-pressure-viscosity coefficient	in ² /1b ²
u	diameter of pinion		λ	-specific film	
FF	-modulus of	lbf/in ²	A	thickness	
E ₁ ,E ₂	elasticity (pinion,	ioi, iii	λ	-heat conductivity	lbf/[s °F]
	gear)	A SHELL	λ _M	-mean coefficient	
Er	-reduced modulus	lbf/in ²	$\mu_{\rm m}$	of friction	
	of elasticity		μ	-absolute viscosity	Reyns
h .	-minimum film	in	r 0		(lbs/in ²)
h _{min}	thickness		V1V2	-Poisson's ratio	
L _{min}	-minimum contact	in	1 2	(pinion, gear)	
min	length		V40	-kinematic viscosity	cSt
n	-pinion speed	rpm	40	of 40°C	
P	-transmitted power	hp	ρ ₁ ρ ₂	-transverse radius	in
q	-oil flow rate	gpm	1 2	of curvature	
S	-average surface	μin		(pinion, gear)	
	roughness, rms		ρ _M	-density	lb/in ³
Tb	-bulk temperature	°F	ρ _n	-normal relative	in
Tb,test	-bulk temperature	°F		radius of curvature	
	of test gears		σ	-composite surface	μin
Tc	-contact	°F		roughness, rms	
	temperature	19.4	σ_1, σ_2	-surface roughness,	μin
Tf	-flash temperature	°F		rms (pinion, gear)	
Tf, test	-maximum flash	°F	Ψ _b	-base helix angle	deg
	temperature of	CELLS & ALL	ω1,ω2	-angular velocity	rad/s
	test gears	1993		(pinion, gear)	
Ts	-scuffing	°F			
	temperature	A Long			
V	-operating pitch line	ft/min			
	velocity				

perature of the gear teeth reaches a critical magnitude. The contact temperature is the sum of two components, the bulk temperature and the flash temperature; i.e., Tc = Tb + Tf.

Blok's flash temperature equation as formulated in AGMA 2001-B88, Appendix A³ for spur and helical gears is

$$Tf = \frac{0.8\mu_m X_r w_{Nr} | (V_{rl})^{0.5} - (V_{r2})^{0.5} |}{B_{M}(b_{H})^{0.5}}$$

where

 $\mu_{\rm m}$ = mean coefficient of friction

X = load sharing factor

w_{Nr} = normal unit load

 V_{r1}^{r1} = rolling velocity of the pinion V_{r2}^{r2} = rolling velocity of the gear

 B_{M} = thermal contact coefficient

 $b_{H} = \text{semi-width of Hertzian contact}$ band

Mean Coefficient of Friction, µ

The following equation gives a typical value of $0.06 < \mu_m < 0.18$ for the mean coefficient of friction for gears operating the the partial EHD regime ($\lambda < 1$). It may give values too low for boundary-lubricated gears where μ_m may be greater than 0.2, or too high for gears in the fullfilm regime ($\lambda > 2$), where μ_m may be less than 0.01.

$$\mu_m = 0.06 \left(\frac{50}{50 - S} \right)$$

where

$$\left(\frac{50}{50-S}\right) \le 3.0$$

S = average surface roughness, rms

$$S = \frac{\sigma_1 + \sigma_2}{2}$$

Thermal Contact Coefficient, B

The thermal contact coefficient is given by

$$B_M = (\lambda_M \rho_M C_M)^{0.2}$$

where

 $\lambda_{\rm M}$ = heat conductivity $\rho_{M} = density$ C_{M} = specific heat per unit mass For typical gear steels, B_M = 43 Lbf/[in s^{0.5} °F]

Table 1⁵ - Welding Factor X

Xw	
1.00	
1.25	
1.50	
1.50	
1.15	
1.00	
0.85	
0.45	
	1.00 1.25 1.50 1.50 1.15 1.00 0.85

Semi-Width of Hertzian Contact Band, bu

$$b_{H} = \left(\frac{8X_{r}w_{Nr}\rho_{n}^{0.5}}{\pi E_{r}}\right)$$

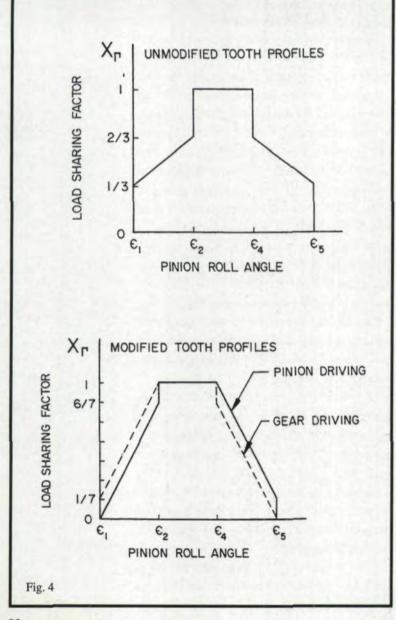
Bulk Temperature, T,

The gear bulk temperature is the equilibrium bulk temperature of the gear teeth before they enter the meshing zone. In some cases, the bulk temperature may be significantly higher than the temperature of the oil supplied to the gear mesh. In a test with ultra high-speed gears 4, the pinion bulk temperature was 275°F (171°F hotter than the oil inlet temperature). For turbine gears at lower speeds, the bulk temperature rise of the gear teeth over the inlet oil temperature may range from 20F at 12,000 fpm pitch line velocity to 40°F at 16,000 fpm. At similar speeds, the bulk temperature rise of aircraft gears with less oil flow may range from 40°F to 60°F.

Scuffing Temperature, Ts

The scuffing temperature is the contact temperature at which scuffing is likely to occur with the chosen combination of lubricant and gear materials.

For mineral oils without anti-scuff additives or for mineral oils with low concentrations of anti-scuff additives, the scuffing temperature is independent of the operating conditions for a fairly wide range. For these oils, the scuffing temperature may be correlated with the composition of the oil. The viscosity grade is a convenient index of the composition and, thus, of the scuffing temperature.


For non-anti-scuff mineral oils, the mean scuffing temperature (50% chance of scuffing) is given by

 $T_{s} = 146 + 591 nv {}_{40}{}^{\circ}F$

 Table 2⁶

 Synthetic Lubricant Mean Scuffing Temperature, Ts

Lubricant	Mean Scuffing Temp. Ts (°F)
MIL-L-6081 (grade 1005)	264
MIL-L-7808	400
MIL-L-23699	425
DERD2487	440
DERD2497	465
DOD-L-85734	500
MOBIL SHC624	540
DEXRON II	550

For mineral oils with low concentrations of antiscuff additives, the mean scuffing temperature is given by

 $Ts = 245 + 59 lnv_{40}$ °F

where

 v_{40} = kinematic viscosity at 40°C, cSt The scuffing temperature determined from FZG test gears for mineral oils without anti-scuff additives or with low concentrations of anti-scuff additives may be extended to different gear steels, heat treatments, or surface treatments by introducing an empirical welding factor:

$$Ts = T_{b'test} + X_w T_{f'tes}$$

where

 X_w = welding factor (See Table 1.) $T_{b'test}$ = bulk temperature of test gears $T_{f'test}$ = maximum flash temperature of test gears.

For synthetic lubricants and carburized gears typical of the aerospace industry, the scuffing temperatures are shown in Table 2.

For mineral oils with high concentrations of anti-scuff additives, such as hypoid gear oils, research is still needed to determine whether the scuffing temperature is dependent on the materials and/or operating conditions. Special attention has to be paid to the correlation between test conditions and actual or design conditions.

Acknowledgement: Reprinted by permission of Society of Tribologists and Lubrication Engineers.

References:

1. DOWSON, D. "Elastohydrodynamics." Paper No. 10, Proc. Inst. Mech. Engrs. Vol. 182, PT3A, 1967, pp. 151-167.

 BLOK, H. "Les Temperatures de Surface dans les Conditions de Graissage sons Pressions Extreme." Second World Petroleum Congress, Paris, June, 1937.
 AGMA 2001-B88. "Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth." 1988.

4. AKAZAWA, M., TEJIMA, T. & NARITA, T. "Full Scale Test of High Speed, High Powered Gear Unit -Helical Gears of 25,000 PS at 200 m/s PLV." ASME Paper No. 80-C2/DET-4, 1980.

5. AGMA. op.cit.

 DRAGO, R. J. "Comparative Load Capacity Evaluation of CBN-Finished Gears." AGMA Paper No. 88 FTM 8. Oct, 1988.