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Introduction
Many CAD (Computer Aided Design) sys-

tems have been developed and implemented to
produce a superior quality design and to increase
the design productivity in the gear industry. In
general, it is true that a major portion of design
tasks can be performed by CAD systems cur-
rently available. However, they can only ad-
dress the computational aspects of gear design
that typically require decision-making as well.
In most industrial gear design practices, the
initial design is the critical task that significantly
effects the final results. However, the decisions

Fig. 1 - Simplified mechanical design stages.
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about estimating or changing gear size param-
eters must be made by a gear design expert.

To move one step forward, two new system
developing techniques have been investigated.
One is the artificial neural net, and the other is the
expert system known as artificial intelligence.
The former is well-suited to estimating initial
gear size, while the latter is the choice for chang-
ing parameters. This article demonstrates the
adaptability of an artificial neural net for the
initial gear design which is a part of the Intelli-
gel1CeGearCAD system under development, that
emulates the entire gear design procedure, In-
cluding the decision-making tasks.

Initial Gear Design
In Fig. I, a model of the mechanical design

procedure is illustrated. Similar models have been
used to develop mechanical engineering CAD
and expert systems.(10-11)This simplified design
model is adaptable to most mechanical element
designs including gear design. A specific model
representative of gear design which corresponds
to Fig. I is shown in Fig. 2.

The first stage of designing a gear set is
estimating the necessary gear size parameters
based on user-specified requirements. Once these
parameters are selected, gear and tool geometries
will be calculated and evaluated by the AGMA
(American Gear Manufacturers Association)
power rating standard(S) If the power rating result



is unsatisfactory, the result will be analyzed and
the necessary parameters will be changed. The
second and the third stages will be repeated in an
iterative manner until the AGMA power rating is
satisfied. The final stage is designing a gear
blank, which is customarily done after a success-
ful power rating is achieved.

In practice, engineers go through the initial
design stage only once during the entire design
procedure. The number of iterations caITied out to
complete the gear design depends upon how well
the gear size parameters are estimated in the
initial design stage. Consequently, an efficient
gear design can only be achieved by properly
estimating the initial gear size parameters.

The estimated parameters required for the
initial design stage consist of the center distance,
diametral pitch, pinion teeth number, and gear
teeth number, or alternately, the total number of
teeth. These four are the essential parameters
necessary to carry out the AGMA power rating
procedures. Equation 1 illustrates how these four
parameters are related to each other while assum-
ing the helix angle is zero.

where, DP Diametral Pitch
CD Center Distance
NG Gear Teeth umber
NP Pinion Teeth Number
NT Total Teeth Number

The determination of one parameter in Ex-
pression la is dependent on the two other param-
eters. Therefore, at least two parameters must be
estimated by the engineer. There may be many
combinations of sol utions which satisfy Equation
1for a single example. Finding a superior solution
among a myriad of possibilities depends upon the
ability of an engineer. Proper initial parameter
estimations usually require years of experience,
as well as an organized knowledge of the field. In
most cases, the accumulated design data through
the history of a company is also an essential
factor. This type of design task is known as
decision making. Fig. 3 shows the factors in-
volved in a gear engineer's decision making.

Two Steps of Initial Gear Design
The initial gear design stage consists of two

steps. First, an engineer refers to a standard prod-
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Fig. 3 - Engineer's decision-making factors.
uct catalog to identify the proper model. The
selection is based on the user's specifications,
which include horsepower, speed ratio, and input
RPM. At this step, the center distance is obtained
with the proper selection of model size. ext, the
numberofpinion and gearteeth will be estimated
by a trial and eITor method. The ratio of esti mated
number of pinion and gear teeth must not exceed
the predetermined percentage of error over the
required speed ratio. The diametral pitch can then
be calculated using these estimated values. This
procedure is only one example of a number of
initial gear design methods used in the industry.
The method shown here was obtained from an
engineer with many years of experience in both
designing and manufacturing, actively working
in the gear industry.

Artificial Neural Net
The artificial neural net is composed of highly

interconnected layers which attempt to achieve

AGMA
Standard

Company
Design
History

Industry
Standard

Dr. Taesik Joeng
is a reseacher al SECOM
Ill1elligenl Syslems Lab, To-
kyo. His research inlereSlS
include experr syslems and
objecl-orienled program-
ming for engineering de-
sign aUlOmalion.

is Ihe Arminglon Professor
of Engineering al Case
Weslern Reserve Univer-
Sil)', Cleveland, OH.

is Engineering Manager
al Joy Technologies Inc.,
Bedford Gear Division. He
isa memberofASMEand a
licensed professional engi-
neer wilh over 15 years'
experience in gear design
and manufaclure.

MAY I J U N E 1 993 27



human neuron-like performance. (3) It is designed
to emulate human neural activities, exhibiting
abilities, such as learning, generalization, and
abstraetiouv" using mathematical implementa-
tions. A typical model of the artificial neural net
is illustrated in Fig. 4 The modeled net has three
layers: input, hidden (or middle), and output
layers. This model. is extremel y simple, compared
to the hundred trillion connections of the human
neural system.(2}The terms shown in parenthesis
in Fig. 4 are the anatomic terms used for the
human neural system.
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In Fig. 4, each node in one layer receives
multiple signals from the nodes in the previous
layer. The strength of each signal is determined
by the value of the connecting weight between
paired nodes. The signals conveyed to the node
are summed and averaged (or mathematically
evaluated) to decide whether this node will acti-
vate or not. If the node activates, the signal
generated will be transmitted to the nodes in the
next layer.

The artificial neural net is not functional with-
out existing know ledge, just as a human engineer
cannot perform a task without pre-existing knowl-
edge of the field, The net must be trained with
known knowledge patterns that consist of input
and the corresponding target output. The knowl-
edge patterns are fed through the net so that the
connecting weights can be learned and memo-
rized. Once aU the connecting weights are estab-
lished, the net win produce the proper output
when the same or similar input pattern is seen.
Accordingly, the quality of the knowledge pat-
terns used for training influences the quality of
the estimated outputs. The net is said to be suc-
cessfully trained if the estimated outputs match
the target outputs within a certain level oferror.
Because thetraining knowledge patterns may not
be perfect, there is always the chance that an
errant estimation may appear, just as the perfor-
mance of the human engineer wi II. be inaccurate
if incorrect knowledge was used in training.

Artificial Neural Net Algorithms
Many artificial neural net algorithms have

been developed and implemented. Although
there are some structural variations, the basic
idea is equivalent in terms of implementing a
human neural system. Each algorithm has its
own characteristics and applicable regime. After
the nature of initial gear design was investi-
gated, two algorithms, namely LVQ (Learning
Vector Quantization) and GDR (Generalized
Delta Rule), were selected to emulate two steps
of initial gear design,

LVQ is also known as the pattern recognition
or classification method, which classifies avail-
able knowledge patterns in a pattern space.P'
Each pattern must have its own class label (or
class I.D.). LVQ forms dusters, which include
identically labeled patterns, while remembering
their weight centers. When a new input pattern
without a class label, not encountered previously,
is seen, LV Q locates the cluster weight center

Fig• .:$ • Typical model of an artificial neural net.
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Fig . .5 - Single step of LVQ algorithm.
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which is closest to the new input pattern and sends
the class label of the selected cluster as the output
In other words, LVQ simply tells where the new
input pattern belongs.

InFig, 5, a single step of the LVQ is illustrat-
ed. At any k'h step, the distances between one of
training patterns Pi E RI'!, i"" 1,2,....., I, and the
neurons (or reference vectors(3» Nj ERn,j"" 1,
2,... , In, are measured using Euclidean distance
(ED) metric to find the nearest neuron Nc'

ED."" 1:( p _n)2
J qe l q q

where, P Elements of P.q I

nq Elements of Nj

The neurons, ~'s, are initially located ran-
domly in the pattern space, and the closest neu-
ron N becomes a candidate for one of the many, c'

cluster centers that will appear after all steps are
performed ..If the closest neuron has the identical
class label as the pattern, this neuron is moved
toward the pattern as the reward for a correct
classification. Otherwise the neuron is moved
away from the pattern as the punishment for an
incorrect classification.P' Equation 3a is used to
represent the move toward the pattern, and Equa-
tion 3b is used for the move away. For an other
neurons, Equation 3c is applied.

k+1 Nk f .N. =.,.orJ 1:- c
J J

where, 0: is a monotonically decreasing momen-
tum rate and preferably less than 1.0.(3) In prac-
tice, the determination of 0: in non-trivial. When
the neuron N is moving toward the pattern, it isc

known that the pattern belongs to this neuron at
the k'h iteration. The same method will be applied
to all available patterns, ami the step will be
repeated iteratively until all the clusters are formed.

nDR also requires knowledge patterns which
have inputs and corresponding target outputs for
training. The knowledge patterns are supplied to
the net in a feed-forward manner to find a con-
necting weight matrix, and then those weights are
adjusted by the back-propagation of error to re-
duce 1:11.etotal. net error, The GDR net shown in
Fig. 6 uses the typical artificial neural net con-
struction introduced in Fig. 4. The outputs of the

nodes in one layer are transmitted to nodes in the
next layer through connections that amplify, at-
tenuate, or inhibit such outputs through connect-
ing weignrs.i!' The net may have a number of
hidden layers. However, in practice, only one or
two hidden layers are sufficient for most applica-
tions.(5)

The output of a node in the input layer i is

0i= Ii' i ""1,2,...,n (4)

(2) The net input to a node in layer j is

net. = L W..0., j = 1, 2,,,., m
J j JI !

(5)

The output of node j is

0.= __ 1_
J 1 + e'

(6)

f = net. + fI--J J (7)

In Expression 7, the parameter 9j serves as a
threshold or bias. Similarly, input netk and output
Ok can be found by substituting the subscriptj to
k in Equations 5 through 7.

(8)

1
0=---

- k 1 + e'
(9)

(10)

All knowledge patterns will be fed through the net
(J,c) by the feed-forward procedures, Equations 4

Hidden Layer
J

Input Layer
1

•
•

Weights ,
W.. net.

J! J

Weights
«;

Fig. 6 • Net construction of GDR a.lgorithm.
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As mentioned earlier, two steps of the initial
gear design are emulated using the artificial neu-
ral nets. Although it is possible to apply a single
neural net to perform the desired task, two differ-
ent algorithms, LVQ and GDR, are used inten-
tionally in order to emulate human performance
more accurately. It will also prevent from training
a single neural net with the entire patterns which
may be thousands.

The product catalog(l2) obtained from the
local gear manufacturing company served as the
training knowledge patterns. The catalog COIl-

tains three input values, horsepower, input RMP,
and speed ratio. In addition, the catalog also
includes the model number which implies proper
center distance. The patterns are neatly tabulated

(15) to the ones which may use the same center dis-
tance. The model numbers in the catalog were
used as the class labels, as well as the desired
outputs of each pattern.

The patterns of four selected models are plot-
ted in Fig ..7. From this figure, it can be seen that
the patterns belonging to one model are scattered
along the axes of speed ratio and input RPM. The
patterns in each model tend to form a distribution

(16) surface which may be the portion of a sphere.
However, it is almost impossible to form any

(17) clusters with this kind ofpattem. Thus, the origi-
nal three dimensional patterns are transformed

through 10. Usually, outputs {Opk} generated by
the net wHI not be the sarne as the target or desired
outputs {Tpk}' The square of the difference (or
pattern error) between these two values is

and the average net error is

E '" _1_ L l: (T - ° )2
net 2p p k pk pk

(12)

p = 1,2, ... , P

where, P Number of Patterns
IfEnet falls into the acceptable error range. the

net is successfully trained. Otherwise, the follow-
ing procedures are necessary to minimize tbe
error. The convergence toward improved values
for the connecting weights and thresholds can be
achieved by taking incremental changes tl.W kj
proportional to aEldWk/lJ

tl.W =_n~ (D)
kj .) aw

kj

_ . a E a netk--11---··--a =. a Wkj

where, '1'1 Learning Rate
Therefore,

.... _ a E _ a =.
where, <\- --a-.-- ,0,- -a--··-=, J Wk. J

The term c\' which is the error to be propagated
backward for the kth node in the layer, can be
rewritten as

aE
a o,

== (T k - Ok) f~(netk)

= (Tk- Ok) Ok (1 - Ok)

By similar mathematical procedures (details can
be found in Ref. 1),

l

terms of the 3's at an upper layer. Thus, starting
at the highest layer (or output layer), Ok can be
evaluated using Expression 15, and the errors
can be propagated backward to the lower lay-
ers. The connecting weights now will be up-

(11) dated as follows,

W."+I= w"+ tl.W."
jt JI J! (18)

where, tl.W" ;;;;n (30.) + atl. W"
J! I ~ J ] JI

The momentum rate ahas been added to Expres-
sions 14 and 16 to reduce the risk of oscillations
while training the net in the iterative approach,' I)

The a also allows a larger value of 11, thereby
speeding convergency.I" Both 11 and a influence
the training results and should be carefully se-
lected by trial and error. The improved connect-
ing weight matrix will be used at the next itera-
tion, and the procedure is repeated until the sys-
tem error reaches the desired level,

Applications

The 3' s at an internal node can be evaluated in and mapped onto a two dimensional pattern space



using Equations 19 through 22. Fig. 8 shows the
transformed patterns mapped onto the new space.

where, I) Speed Ratio
12 Horsepower
13 Input RPM
XI' X2 Transformed Pattern

Fig. 9 illustrates the multiple GDR net con-
struction connected to a single LVQ net for the

(19)
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(21)

(22)
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initial. gear design application. The number of Fig. 7 • Original catalog training patterns ..
GDR nets required is determined by the number
of models available in the product catalog. Ac-
cordingly, each GDR net is to be trained with the
patterns that belong to the same model. A single
hidden layer with three nodes is used for each
GDR net. For a triple-reduction case, three such
multiple nets should be combined.

The number of clusters formed using the
LVQ net depends upon the size of the limiting
radius r in Fig. 5, which controls the size of the
clusters. If the limiting radius is overly large,
some clusters having different model numbers
(or different class labels) will overlap, If the
limiting radius is too small, too many clusters
win be formed. Therefore, an optimized value
is required.

After tile each net is successfully trained, the
LVQ net can produce the model number and
center distance when a new input pattern (horse-
power, speed ratio, and input. RMP) is provided.
The output, a model number, will serve to deter-

mine the matching GDR net which will estimate
the diametral pitch. The GDR net also uses the
same input as the LVQnet. In real- world design,
the number of pinion and gear teeth are esti-
mated, and the diametral pitch is calculated
using this estimation. However, the number of
pinion and gear teeth relative to the speed ratio
are not functionally distributed. Therefore, the
diametral pitch is selected as the target output in
this application. Afterwards, the other param-

Transformed xi

Fig. 8 . Transformed rralning patterns,

HP Ratio RPM

Model Number i

HI' Ratio RPM

~ ~ ~
Model #i

GDRNET• • ••

eters can be calculated smgthe estimated param- Fig. 9 ..Multiple network construction for initial gear design application.

MAY I J U N E , 9 9 3 31

Center
Distance Diametral Pitch



I

1 Table I - Error of Estimated Outputs

I Error % Error %
70 patterns .in before after Total Net
each model adjusted adjuster error

Modell 20
.1

7
Jl

0.00004]1

Model 2 14 7
I

0.000043

Model 3 5 5 I 0.000018

Model 4 9'
I

9
I

0.000023

Average 14 7 0.000031

TableD Error Factors for different 11 and a

Error Factors

I

n C( Modell i Model 2 Model 3 Model 4
I

0.70 0.50 1.03 I 1.05 1.01 1.01

I
0.90 0,70 l.00 tOO 1.00' 1..001

I
0.95 0.90 0.92 0.94 0.93 0.97

I
0.99 0.95 0.93 0,97 0.90 0.90

I

eters, the center distance, and diametral pitch.
In Table I, the percentages of the net errors

after 20,000 iterations are tabulated. The per-
centages indicate the number of incorrect esti-
mations made by the GDR nets over the number
of'the training patterns. While investigating those
incorrectly estimated diametral pitches. it was
found that some of the values were not com-
monly used in the gear industry. Thus, those
uncommon diametral pitches must be .adjusted
to the recommended values.(6) The error per-
centages were decreased after adjustment. which
are shown in the third column in Table I. The
average error for the four selected models is
practically acceptable.

There are several considerations in using the
GDR algorithm for initial gear design task. Tile
first consideration is how to find the adequate
learning rate, 1], and momentum rate, a. The
typical values of 11 and a for most applications
are 0.9 and 0.7, respectively.P! Suggestions can
be found in Table IT, which shows the error
factors relative to the typical values. The 11can
be selected between 0.95 and 0.99,. while the a
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can be selected between 0.9 and 0.95, When the
a was increased higher than 0.95, the training
seemed to become trapped in a local error mint-
mum, and the error was not improved. It was also
found that the number of iterations higber than
20.000 did not improve the results,

How the available trainingpattems were
organized was .81150 important. The lest was per-
formed with three different sorting methods of
training patterns; sorted by input RMP, by horse-
power, and by speed ratio. As a result. it was
learned that the training patterns sorted by input
RMP order produced the best results, When the
number of nodes in the hidden layer was in-
creased to six. no improvement was observed at
the same number of iterations. When the number
of decimal places was increased from two to
four, the number of iterations was decreased by
25% at the same error level.

Numerous test designs were completed with
the entirely trained artificial neural net Each test
de ign was evaluated by a commercially avail-
able AGMA power rating software.(l3l About
60% of the test designs passed the power rating
without changing any initial gear size param-
eters, while the balance required several changes
to pas within a few iterations,

Conclusions
Once the net is trained with the available

des:ign knowledge, it can provide the estimated
output in a single iteration, usually in seconds ..If
the outputs generated by the net have been ap-
proved as good estimations, these input and
output patterns can be added to the existing
design knowledge in order to achieve bener
performance in the future. The company's de-
sign knowledge will grow automatically by add-
ing new patterns to the knowledge data base, It
will ensure that all available design knowledge
of engineers is collected and organized without
special effort. By using the artificial neural net,
the design time for inexperienced engineers can
be reduced, and a design consistent with past
designs achived,

Another advantage is that the artificialaeu-
raj net can oe trained to deal with. incomplete and
uncertain evidence. It understands the relation-
ship between inputs and outputs, and does not
burden the engineer with specific analyses. If
conventional techniques are used, the engineer
must find their mathematical relationship before
developing any system, which may require many



years offield experience' and an extensive math-
ematical background.

Although the artificial neural net success-
fullyemulates the performance of the human
engineerfor tbe initial gear design task, there are

References:
.1.Pao, Yoh-Han. Adaptive Patrern Recognition. and

Neural Networks, Addison-Wesley Publishing Com-

pany, Inc., 1989, pp 113-140.197-222.
2. Wasserman, Philip D. Neural Computing; Theory

still some disadvantages to overcome. The most and Practice, Van Nostrand Reinhold, ew York,
critical disadvantage is the slow training time. It 1989, pp 43-59, 189-199.
took hours to train a neural. net with 70 knowl-
edge patterns in one model, which consisted of
only three inputs and one output, O.1iI a fairly
capable personal computer, such as a 80386-
based PC. In the case of single reductions, 22
such models are to be found in the catalog used.
Furthermore, when new knowledge patterns are
to be added to the existing patterns, the entire
neural net must be retrained,

Human neurons transmit signals at a very
slow speed, considering the immense velocity of
signal transmission in a modem digital computer.
However, the brain's huge computational rate is
achieved by a tremendou number of parallel
computational units. (2) The most advanced mod-
em computer systems are packed with only a few
parallel processing units, implying that the ability
of the artificial neural net is limited by current
computer hardware technology.

As previously mentioned, another important
fact is that inaccurate training knowledge pat-
terns will lead to inaccurate estimated outputs.
Thu s, know Iedge pattern s must be prepared care-

fully before any artificial neural net i applied in
real practice.

Nevertheless, the results ohhis work provide
the applicability of the artificial neural net to the
initial gear design 10 emulate the decision-mak-
ing tasks of the human engineer u ing the identi-
cal design tep. In general, imilar methods can
be adapted to many mechanical engineering de-
sign problems, More detailed implementation
must be carried out to enhance the quality of
estimations of the artificial neural net, 1.1

Acknowledgements: Deepest appreciation goes 0111

to Mr. J. R. Dammon of Fairfield Manufacturing

Company, Inc. Without his generosity in providing

the AGMA power rating software. non.e of the results

of this work could have been properly evaluated.

Originall» presented (If the AGMA Fall Techni-

cal Meeting, /991. Reprinted witt: permission. The

opinions. statements, and conclusions presented are

those of the author and in no way represent the

position or opinion of AGMA.

3. Kohonen. Teuvo. Self-Organizarion and Associa-

tive Memory, 31'd ed., Sprjnger-Verlag, New York,

1989, pp 185-209.

4. Wasserman, Philip D. and Schwartz, Tom. "Neural
Networks, Part 2: What are they and why is everybody
so interested in them now'!", IEEE Expert, Spring.
1988, pp 10-15.

5. EEAP484: Adaptive Pattern Recognition and Neu-

ral Networks. Class Lecture Note, Case Western Re-

serve University, 1990.
6. Dudley. Darle W. Handbook of Practical Gear

Design, McGraw-Hili Book Company, ew York,
1984.

7. Drago. Raymond J. Fundamentals of Gear Design,

Butterworths, Stoneham, MA. 1988, pp 265-377.

8. AGMA Standard 200 1-888. "Fundamental Rating

Factors and Calculation Methods for Involute Spur
and Helical Gear Teeth," American Gear Manufac-

turers Association, 1988.

9. AGMA Standard 601O-E88. "Standard for Spur,
Helical, Herringbone, and Bevel Enclosed Drives,"

American Gear Manufacturers Association, 1988.

10. Dixon, John R. and Simmons, Melvin K. "Expert

Systems for Mechanical Design: A Program of Re-

search," ASMETechnical Paper 85-DET-78, ASME,

New York, 1985.

11. Kumar, A.. Kinzal, G.L., and Singh. R. "A Pre-

liminary Expert System For Mechanical Design:'

Proceedings, 1986 ASME International Computers

in Engineering Conference, pp 29-35.
12. "MARK II Parallel Shaft Speed Reducers." Prod-
uct Catalog H-87, The Horsburgh & Scott Co., Cleve-

land,OH.
13, "Gear Design Software," Fairfield Manufacturing

Company, Inc., Lafayette. IN, 1988.

MAYIJU'NE 1993 33


