
Introduction
In 2001 AGMA introduced the first of two documents: 

ANSI/AGMA 2015–1–A01: Accuracy Classification 
System—Tangential Measurements for Cylindrical Gears, 
followed in 2006 by the release of ANSI/AGMA 2015–2–
A06: Accuracy Classification System—Radial System for 
Cylindrical Gears. Both of these documents, when com-
bined, officially replace the still widely used standard, 
AGMA 2000–A88: Gear Classification and Inspection 
Handbook.

Although ANSI/AGMA 2015–2–A06 was adopted by the 
general membership, it is likely that most members—even to 
this day—do not fully understand how this document differs 
from AGMA 2000–A88 in its application to the double-flank 
measurement of a gear. In the author’s viewpoint, some 
of the improvements that ANSI/AGMA 2015–2–A06 was 
intended to provide, in fact resulted in just the opposite; 
i.e., more uncertainty in terms of product quality than what 
existed previously. It is recommended that ANSI/AGMA 
2015–2–A06 be revised to reflect the concerns expressed in 
this document.

Concerns with ANSI/AGMA 2015–2–A06 and How to 
Resolve Them

Removal of the long-term component in the calculation 
of tooth-to-tooth deviations. ANSI/AGMA 2015–2–A06 in 
its definition of the tooth-to-tooth radial composite devia-
tion, fid, recommends that “The long-term component sinu-
soidal effect of eccentricity should be removed from the 
waveform before determining the tooth-to-tooth deviation 
value,” whereas the AGMA 2000–A88 document relies on 
raw data.

This long-term component, its definition and its implica-
tions are the crux of the concerns relating to ANSI/AGMA 
2015–2–A06. AGMA used techniques from single-flank 
testing in relation to data filtering and long-form compo-
nent removal and applied it to double-flank testing on the 
assumption that its use would be a better predictor of noise 
quality. This correlation between tooth-to-tooth radial com-
posite deviation measured in this manner and noise has never 
been proven; rather, as will be demonstrated here, it will 
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Management Summary
AGMA introduced ANSI/AGMA 2015–2–A06—

Accuracy Classification System: Radial System for 
Cylindrical Gears, in 2006 as the first major rewrite of the 
double-flank accuracy standard in over 18 years.

This document explains concerns related to the use of 
ANSI/AGMA 2015–2–A06 as an accuracy classification 
system and recommends a revised system that can be of 
more service to the gearing industry.
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cause problems that cast doubt upon any unproven useful-
ness to predict noise better than AGMA 2000–A88.

The explanation of the measurement and application of the 
long-term component is detailed in the AGMA Information 
Sheet 915–2–A05, i.e., “Inspection Practices, Part 2: 
Cylindrical Gears/Radial Measurements.” In using a double-
flank tester, AGMA 915–2–A05 recommends filtering of the 
data either by analog or digital electronic means.

Essentially, the technique is to take all of the collected data 
and then, by applying a fast Fourier analysis, the data is sep-
arated into different orders. All of the orders combined result 
in the total data collected. Of particular interest in this docu-
ment is the first-order data that is defined as the long-form 
component. The first-order data consists of a single, sinusoi-
dal waveform that is calculated based on all of the original 
data, and is representative of the radial run-out Fr of the gear. 
AGMA 915–2–A05 recommends that the first-order data be 
removed from the original measurements for the purposes of 
reporting the tooth-to-tooth radial composite deviation. An 
example of the resulting charts is shown in Figure 1, which 
was extracted from AGMA 915–2–A05. If one mathemati-
cally subtracts the sinusoidal waveform of the middle graph 
Figure 1 from the original data in the top graph, we obtain 
the filtered result shown in the bottom graph in Figure 1.

AGMA 915–2–A05 recommends this data filtering tech-
nique in order to segregate the superimposition of the invo-
lute variations from the run-out variations, as is true of the 
gear manufacturing process where correction of these issues 
is done individually as well. An example of such an effect 
is shown in Figure 2 where, in the unfiltered raw data, the 
tooth-to-tooth variation is exaggerated along the slope of the 
run-out curve that has the greatest slope, while in the filtered 
result, a smaller tooth-to-tooth variation is shown.

Some unintentional flaws exist in the approach used in 
ANSI/AGMA 2015–2–A06. The most significant issue is 
that in practical use, the maximum tooth-to-tooth deviation 
rarely occurs exactly at the position of the greatest slope of 
the run-out curve (Fig. 2, top “Unfiltered”). ANSI/AGMA 
2015–2–A06 incorrectly assumes that if the worst tooth-
to-tooth occurs in this position, the filtered tooth-to-tooth 
deviation magnitude will be dramatically reduced, compared 
to the unfiltered deviation. As a result, the magnitude of the 
tooth-to-tooth deviation tolerances in relation to the total 
composite tolerances is greatly reduced in this standard, as 
compared to AGMA 2000–A88.

In fact, the position of the worst tooth-to-tooth deviation 
on any given part is independent of the positioning of the 
sine wave of the run-out curve; as a result, the tooth-to-tooth 
deviations with filtering are typically not dramatically better 
(or worse) than the unfiltered results. It is even possible that 
the magnitude of the filtered tooth-to-tooth variation is larger 
than the unfiltered variation if the worst unfiltered tooth-to-
tooth variation occurs in proximity to the peak or valley of 
the sine wave of the run-out curve as shown in Figure 3a 
and Figure 3b, where the unfiltered result was 9 microns and 
the filtered result was 11 microns. Of particular interest in 
looking at Figure 3a and Figure 3b is that the position of the 
worst tooth-to-tooth deviation—as indicated by the vertical 

Figure 1—Double-flank, tight-mesh center distance data taken for a 
30-tooth gear (extracted from AGMA 915–2–A05).
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hashed boundary—is shifted showing two different positions 
by the two approaches. This is not uncommon; depending on 
the nature of the gear, the worst tooth-to-tooth deviations can 
be in completely different parts of the gear when analyzed 
by the two different methods.

The difference in the result between the filtered and unfil-
tered tooth-to-tooth deviations are typically only a few 

microns. In fact, out of hundreds of different gears measured 
over a range in module of 0.5–3.0, and with tooth counts 
between 10 and 120, all exhibited similar differences in 
readings of less than approximately ± 0.003 mm. This leads 
one to question the value of an elaborate filtering technique 
that requires computerized equipment if the results are not 
dramatically different than the AGMA 2000–A88 approach. 
If the results are so similar, how can this actually be a bet-
ter predictor of noise, as was a stated goal in ANSI/AGMA 
2015–2–A06?

There has been no published information to date about 
how such a technique is a better predictor of noise.

It is recommended that any subsequent change to ANSI/
AGMA 2015–2–A06 include a return to the AGMA 2000–
A88 approach to measuring tooth-to-tooth deviation, and 
that the revised standard clearly specifies that filtering of 
data by electronic or mathematical means is not allowed in 
determining whether a part meets AGMA accuracy class 
requirements.

Gears with significant higher-order effects superimposed 
on the long-form component. Another shortcoming of the 
ANSI/AGMA 2015–2–A06 approach is that not all gears 
exhibit well-behaved, tight-mesh center-distance plots where 
eccentricity is the major effect. Although one can mathemati-
cally calculate the first-order sine wave that exists in the 
data, it is not always the only predominant effect in all gear-
ing.

Consider, for example, a plastic gear that is injection-
molded with three gates. It is common to see the effect of a 
third-order wave from the gates superimposed on the first-
order effect of the eccentricity. Yet when this happens, since 
only the first order effect is removed in the calculation of the 
tooth-to-tooth deviation, the effect may be an increase in the 
tooth-to-tooth deviation value reported using ANSI/AGMA 
2015–2–A06, as opposed to AGMA 2000–A88—even if 
the maximum tooth-to-tooth deviation occurs at the greatest 
slope of the run-out curve.Figure 2—Tight-mesh center-distance showing the highest unfiltered 

tooth-to-tooth variation along the greatest slope of the runout curve 
(adapted from ANSI/AGMA 2015–2–A06).

Figure 3a—Unfiltered test showing worst tooth-to-tooth deviation 
near the peak of the runout curve. Figure 3b—Filtered test result of Figure 3a with shifted worst tooth-

to-tooth position and increased magnitude (displayed with increased 
vertical axis scale).
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This situation is shown in Figure 4a and Figure 4b for 
a 45-tooth, 30%-glass-filled nylon gear. In the figure, the 
peaks in the tight mesh center distance are actually the 
weld lines between the gates. The three valleys in the tight-
mesh center-distance plot are the positions of the gates. 
Superimposed on the plot is the once-per-revolution run-out 
curve that generally follows the shape of the tight-mesh 
center-distance curve. However, one can also clearly see that 
a higher-order wave is also an overriding effect on the data. 
The writers of ANSI/AGMA 2015–2–A06 recognized that 
higher-order waves can be problematic in this filtering tech-
nique, but did not have a clear, standardized way to deal with 
these higher orders, so this issue was ignored in the ANSI/
AGMA 2015–2–A06 standard. In Figure 4a and Figure 4b 
it can be seen that the unfiltered tooth-to-tooth deviation on 
this part was 0.024 mm, while the filtered result was 0.026 
mm. The complexity of filtering does not really provide any 
significant benefit to the measurement result on this part 
that, as mentioned, is quite typical amongst all gears mea-
sured.

This type of higher-order effect is not just evident in plas-
tic gears with multiple gates. Similar higher-order issues 
may exist in hobbed and shaved gears; steel gears; heat-

treated gears where distortions may be affected by grain 
direction; ring gears with thin rims; fine blanked gears with 
irregular shapes on the same part; powder metal gears with 
lightening holes; or steel gears with lightening holes, etc.

Reduced tooth-to-tooth tolerances compared to total 
composite tolerance in each accuracy class. The filtered 
tooth-to-tooth variation was expected by the writers of the 
standard to be significantly smaller than the unfiltered, tooth-
to-tooth variation. Hence, the tooth-to-tooth tolerances of 
ANSI/AGMA 2015–2–A06—in any accuracy class—are 
considerably smaller as a percentage to total composite tol-
erance as compared to AGMA 2000–A88. Table 1 shows 
examples of how these tolerances are smaller in ANSI/
AGMA 2015–2–A06 at a fixed level of 18.52% of the total 
composite tolerance, compared to AGMA 2000 at 35–60% 
of the total composite tolerance.

As previously explained, the difference in results between 
the filtered and unfiltered tooth-to-tooth deviations are only 
a few microns—not nearly the difference as the tolerances 
that Table1 would suggest. Most users of ANSI/AGMA 
2015–2–A06 are coming to the realization that this shift in 
tolerances has much larger implications than what was origi-
nally anticipated. Under the AGMA 2000–A88 approach, 

Figure 4a—Unfiltered double-flank test of a triple-gated plastic gear. Figure 4b—Filtered double-flank test of a triple-gated plastic gear.

Table 1—Comparison examples for quality class Q8 to accuracy class C9 and the magnitude of the tooth-to-tooth tolerance (B) 
compared to the total composite tolerance (A)

Tolerances per AGMA 2000-A88, Q8
Tolerances per ANSI/AGMA

2015-2-A06, C9
Total

composite
tolerance,

mm, A

Tooth-to-
tooth

tolerance,
mm, B B/A, %

Total
composite
tolerance,

mm, A

Tooth-to-
tooth

tolerance,
mm, B B/A, %

0.5 module, 10 tooth spur 0.045 0.031 68.9% 0.083 0.015

18.52%

0.5 module, 40 tooth spur 0.047 0.025 53.2% 0.085 0.016
0.5 module, 60 tooth spur 0.050 0.025 50.0% 0.086 0.016
1.5 module, 10 tooth spur 0.074 0.041 55.4% 0.086 0.016
1.5 module, 40 tooth spur 0.077 0.031 40.3% 0.089 0.016
1.5 module, 60 tooth spur 0.085 0.032 37.6% 0.094 0.017
2.0 module, 10 tooth spur 0.086 0.043 50.0% 0.087 0.016
2.0 module, 40 tooth spur 0.089 0.033 37.1% 0.091 0.017
2.0 module, 60 tooth spur 0.099 0.035 35.4% 0.098 0.018
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most gear designers usually select a quality class level based 
on the magnitude of the total composite deviation, since it is 
more difficult to control relative to a tooth-to-tooth devia-
tion in any quality class. Now with tooth-to-tooth tolerances 
being so small relative to the total composite tolerances, 
a supplier usually cannot achieve both the tooth-to-tooth 
requirements and the total composite requirements in the 
same accuracy class. It is even likely that they may be two 
accuracy classes apart.

An even greater concern is if the accuracy class is only 
specified based on the more difficult tooth-to-tooth specifi-
cation, resulting in an overly generous total composite speci-
fication. For example, under ANSI/AGMA 2015–2–A06, a 
1.0 module, 20-tooth spur gear using a C11 accuracy class 
results in a typical tooth-to-tooth tolerance of 0.032 mm, 
which may be a reasonable tolerance for such a gear. If C11 
is also specified for the total composite deviation tolerance, 
the tolerance would be a whopping 0.171 mm. Most likely, 
a C9 specification would need to be made for the total com-
posite tolerance at 0.086 mm, which would be more reason-
able related to the 0.032 mm tooth-to-tooth tolerance.

However, the majority of users of AGMA accuracy grades 
do not even realize that a different accuracy grade can be 
specified for tooth-to-tooth—as opposed to total compos-
ite—tolerances. Practically, however, specifying different 
classes is self-defeating since one can ask the question of 
why an accuracy classification system is needed at all under 
those circumstances, as opposed to explicitly stating the tol-
erances.

It is recommended that a new accuracy class methodol-
ogy be adopted based on the suggestions outlined below to 
correct for the condition that exists today in ANSI/AGMA 
2015–2–A06.

Step factor in tolerances between accuracy classes. 
ANSI/AGMA 2015–2–A06 is similar to most other gear 
classification standards in the step factor between two con-
secutive accuracy classes. Values of the next higher or lower 
class are determined by multiplying or dividing the value 
from the previous class by √2 or 1.414. Hence there is a 
41.4% step factor between classes, a rather large step factor 
by today’s technological standards. The result is that most 
of the gearing specified by double-flank inspection falls in 
relatively few of the 11 available accuracy classes, with most 
falling between C7 and C10.

When creating a new accuracy standard, it is recommend-
ed that the historic use of a √2 step factor be reconsidered 
for a smaller one, thus allowing for the practical use of more 
accuracy classes. A suggestion would be to consider a step 
factor of 1.2; i.e., a 20% step factor between classes.

The relationship between the number of teeth, module 
and tolerances. ANSI/AGMA 2015–2–A06, in comparison 
to AGMA 2000–A88, is an improvement in reducing the 
sensitivity of the total composite tolerance value to the num-
ber of teeth, and even the module of a given gear. Practical 
experience shows that module and number of teeth really do 
not have any influence on the manufacturing capability in 
gearing. It is suggested that in a future revision to the accu-
racy standard, the sensitivity can be completely eliminated, 

which would greatly simplify the standard and be of more 
practical use as well.

The tooth-to-tooth tolerances, on the other hand, do have 
some sensitivity to the number of teeth—although not the 
module. In the extreme case, consider a double-flank test 
on a one-start worm: its tooth-to-tooth deviation will be 
identical to its total composite deviation. A two-start worm 
will most likely have a tooth-to-tooth deviation that is a bit 
smaller than the total composite deviation. As the number 
of teeth increases, the tooth-to-tooth deviation tends to drop 
until some practical limit is reached.

It is recommended that a new accuracy tolerance calcu-
lation method be adopted that makes the total composite 
tolerance a constant value based on each class, and the tooth-
to-tooth tolerance a fraction of the total composite tolerance 
based on the number of teeth in the gear. The suggested cal-
culation method is further outlined below.

The gear accuracy standard should include worms, sec-
tor gears, bevel gears and racks. ANSI/AGMA 2015–2–
A06 limits the number of teeth to be between 3 and 1,000, 
and the helix angle to be less than or equal to 45°.

This means that cylindrical worms fall outside the scope 
of this document. Also, racks are excluded in the sense that 
the equivalent tooth count on a rack would be infinity. In 
addition, there is no specific mention in the scope about how 
to apply the standard to sector gears—or if it even applies.

Worms could be included by creating tooth-to-tooth toler-
ances that are based on the number of teeth and excluding 
the helix angle limitation.

Sector gears can be accommodated by fractionally adjust-
ing the tolerances based on the number of actively used teeth 
in the sector in comparison to the number of teeth in the full 
circle.

Bevel gears should follow the same tolerance scheme as 
cylindrical gears.

Racks and gears with more than 200 teeth can be accom-
modated by using the same tolerances as gears with 200 
teeth.

A further explanation of these issues follows.
Using the fast Fourier transform to calculate the long-

form component. ANSI/AGMA 2015–2–A06 suggests that 
in order to calculate the long-form component, a fast Fourier 
transform be used. This is not a practical solution for the 
calculation of the run-out curve. Fast Fourier transforms are 
a shortcut calculation method to a full Fourier transform. 
This shortcut method was developed in the day of slide rules 
and very slow computers because the number of calculations 
involved in a fast Fourier transform is significantly less than 
what is needed in a full Fourier transform. The problem with 
fast Fourier transforms is that the data set needs to have an 
exactly predefined number of data points that go into the 
calculation. The allowable number of data points is exactly 
2n, where “n” is any whole number. Hence you must have 
2 or 4, 8, 16, 32, 64, 128, etc., data points to enter into the 
calculation. This is a huge chore to do electronically, as it 
introduces a secondary data filtering issue.

A practical number of data points that can be taken in a 
double-flank test is about 1,000 points. According to the 2n 
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theory, one would need exactly 512 data points, or possibly 
1,024 data points. If the apparatus can precisely measure 
only 512 or 1,024 data points—for whatever reason—which 
is usually the case due to computer timing issues—then one 
needs to either first discard data points or add data points by 
some other mathematical filtering algorithm. By discarding 
the wrong points one could alter the tooth-to-tooth results, 
creating more inaccuracy. Given our fast computers of today, 
the solution is to use a full Fourier transform using the full 
data set, and one does not need to deal with the problems of 
data selection at all.

In any future standard, since it is not recommended that 
the long-form component be used for the determination 
of the quality of a gear, the use of a full Fourier transform 
may seem to be a moot point. However, it is very useful if a 
designer wishes to establish an “approximate” run-out speci-
fication or if the measurement of “approximate” run-out is a 
benefit for process control.

Exclusion of manual gaging with ANSI/AGMA 2015–2–
A06. Due to the sophisticated calculating methods required 
for tooth-to-tooth results, the proper implementation of 
ANSI/AGMA 2015–2–A06 makes all non-computerized 
(manual) double-flank testers incapable of providing a mea-
surement result. These types of testers—even today—remain 
the most frequently used testers in the industry. The standard 
should not ignore what is happening in industry and the use 
of these testers. Any future standards must include the provi-
sion to use indicator-type testers.

Test pressure. Currently, AGMA 915–3–A05 makes rec-
ommendations for test pressure based on the gear’s mod-
ule and face width, along with an adjustment if the gear is 
made of plastic instead of metal. A new standard should 
include the definition of a double-flank test pressure as, in 
some cases, test pressure may influence results. However, 
the information sheet should provide more detail on how to 
establish an appropriate test pressure based on the specific 
tester’s natural response, and based on the geometry, mate-
rial and structure of the gear being tested. A simple table—as 
currently exists in AGMA 915–2–A05—is not sensitive to 
all of these issues.

Numbering for accuracy grades can be confusing. One 
of the biggest sources of confusion in specifying the accu-
racy class is when only the numerical grade is used, without 
reference to whether it is a Q designation—as covered by 
AGMA 2000–A88—or a C designation—as covered by 
ANSI/AGMA 2015–2–A06. ANSI/AGMA 2015–2–A06 
uses an accuracy class designation from C4 to C12, with C4 
being the most accurate grade, where AGMA 2000–A88 uses 
classes Q3 to Q15, with Q15 being the most accurate grade. 
The reverse in the numbering brings the AGMA classes 
more in line with other standards. Those who specify gears 
using AGMA accuracy grades need to take greater care when 
specifying just a class number on their drawings; simply 
stating AGMA 8 would be quite misleading, as it would not 
be clear if it is a Q8 or a C8—two entirely different things. 
The overlap in numbering is unfortunate; any future system 
should consider an entirely different set of numbers to avoid 
further confusion.

Proposal for a Revised Radial Gear Accuracy 
Classification System

Based on the discussion above, the following recommen-
dations are made for a revised AGMA radial gear accuracy 
classification system:
• Return to the AGMA 2000–A88 definition of the tooth-to-

tooth deviation as being the difference in the tight-mesh 
center-distance within a single-tooth zone without adjust-
ment for the long-form component. This simplifies the 
issue and allows for use of either electronic or manual 
gages.

• Include in the scope the use of the system for cylindrical 
worms, worm gears, sector gears, racks and bevel gears. 
For racks, use 200 teeth in the calculation of tooth-to-tooth 
tolerances. For gears with more than 200 teeth, default to 
200 teeth for calculation purposes. For sector gears, in the 
calculation of total composite and tooth-to-tooth tolerance, 
adjust the full-circle value by the fraction of the number 
of teeth in the sector compared to the number of teeth full-
circle.

• Create accuracy grades R20–R30 (R for radial) that are 
based on a constant value for total composite tolerance, 
with an associated tooth-to-tooth value that varies with the 
number of teeth. Adjust the tooth-to-tooth tolerance to be 
more practical in relation to the total composite tolerance. 
The class value 20–30 is used to avoid numerical duplica-
tion with any other system.

• Reduce the step size between classes to 20%.
• Recommend a way to calculate “approximate run-out” 

from the double-flank charts in case people can benefit 
from this information for part development purposes. This 
can be based on using a full Fourier transform to calculate 
the long-form component only in cases where an optional 
run-out requirement is explicitly stated on the drawing—
not necessarily for everyday use, but as a way to assist in 
calculation of other gear geometry.

• Recommend a method of determining the ideal test pres-
sure based on the natural response of the tester and the test 
piece characteristics, using the least pressure stable read-
ing approach. The test pressure needs to be documented 
and held consistent for all measurements of the same part 
number.
The formulas for the calculation of the tolerances are rec-

ommended as follows:
For the radial total composite tolerance: (1)

FidT = 1.2(R–26)
, mm10

where
R is the accuracy class

For the radial tooth-to-tooth tolerance: (2)
FidT = 1.2(R–26–Log26z)

, mm10
where
Z is the number of teeth in the full circle gear

For the “approximate” run-out tolerance: (3)
FrT = (0.741) 1.2(R–26)

, mm10
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These formulas result in the tolerances shown in Figure 
5 for class R26 and in Table 2 for gears with selected tooth 
counts.

For more-accurate classes, divide the R26 value by a 1.2 
step factor for each class below R26 between R20 and R25. 
For less-accurate classes, multiply the R26 value by a 1.2 
step factor for each class above R26 between R27 and R30. 
The tooth-to-tooth curve has steps in it due to a rounding to 
the nearest micron. 
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Figure 5—Proposed radial accuracy tolerances for class R26—
graphical form.

Table 2—Proposed radial accuracy tolerances for class R26—table form

Class
R

FidT,
mm

FrT,
mm

fidT, mm
Z=1 Z=2 Z=3 Z=4 Z=10 Z=16 Z=24 Z=30 Z=40 Z=50 Z=100 Z=200

20 0.033 0.025 0.033 0.029 0.027 0.025 0.021 0.019 0.018 0.017 0.016 0.015 0.013 0.005
21 0.040 0.030 0.040 0.035 0.032 0.030 0.025 0.023 0.021 0.020 0.019 0.018 0.016 0.006
22 0.048 0.036 0.048 0.042 0.039 0.037 0.030 0.028 0.026 0.025 0.023 0.022 0.019 0.007
23 0.058 0.043 0.058 0.050 0.047 0.044 0.037 0.033 0.031 0.029 0.028 0.027 0.023 0.008
24 0.069 0.051 0.069 0.060 0.056 0.053 0.044 0.040 0.037 0.035 0.033 0.032 0.028 0.010
25 0.083 0.062 0.083 0.073 0.067 0.063 0.053 0.048 0.044 0.042 0.040 0.038 0.033 0.011
26 0.100 0.074 0.100 0.087 0.080 0.076 0.063 0.058 0.053 0.051 0.048 0.046 0.040 0.014
27 0.120 0.089 0.120 0.105 0.096 0.091 0.076 0.069 0.064 0.061 0.058 0.055 0.048 0.016
28 0.144 0.107 0.144 0.125 0.116 0.109 0.091 0.083 0.077 0.073 0.069 0.066 0.059 0.020
29 0.173 0.128 0.173 0.151 0.139 0.131 0.109 0.100 0.092 0.088 0.083 0.079 0.069 0.024
30 0.207 0.154 0.207 0.181 0.167 0.157 0.131 0.119 0.110 0.105 0.100 0.095 0.083 0.028
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