
GLOSSARY

IuMi
Pitch 'Point The ta ngent point
viewed in the' transverse
plane of the gear where the
pitch curve rolls with the pitch
curve of a rae k or another
gear. During mesh this point
will move. but it will always lie
on the line of centers.

Angle of obliquity: ~or two
rolling pitch curves, the angle
between the line of centers
and the common norma I
tl\rough the pitch point

Normal: As an adjective: being
at right angles. As a noun: a
straight line which meets a
surface perpendicularly.

Array: The call ection of
coordinate points which
describe a form, There may
be, for example, an x array
and a v array, but mesa may
be spoken of collectivelv as
the x,y array.

Inetex: Array elements ere
numbered starting at one. The
index is a number which
points to a particular element
or coordinate in its arraV.

Slope ,"gle: The angle from
the positive X axis to a line
whie II is ta ngent to a form at
a given point

Slope: The tangent of the
slope angle.

Linlt-Irc geomelJy: A Icrm
made up .of a series of ares
and/or' lines all connected
end tc end.

hMIm.I
Gear pitch curve polar coor-
dinates: rg, 8g

Rack pitch curve rectangular
c.oordinates: xrpl, Ylpl

Gea r IOOth ferm recta ngular
coordinates: "gt, Vgt

Rack. tooth form rectangular
coordin atas; xrt, Vrt

Slope at xrtvrt: srt
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The Math of
Noncircular Gearing

Williiam c..Smith

m oncircular gearing is not new. There are
well-documented articles covering stan-
dard and high order elliptical gears, sinu-

soidal gears, logarithmic spiral gears, and

circular gears mounted eccentrically, What these
designs have in common is a pitch curve defined

by a mathematical function. This article will
cover noncircular gearing with free-form pitch
curves, which, of course, includes all the afore-

mentioned functions ..This article also goes into
the generation of teeth on the pitch curve, which
is 1I0t usually covered in the technical literature,

Needless to say, all this is possible only with the
help of a computer.

When the machine designer requires a mecha-
ill m with cyclic speed or motion variations, he

will usually choose between a cam/follower
motion, some linkage arrangement, or noncircu-
lar gearing. Because of the perceived design and
manufacturing difficulties of noncircular gears,
they will be the last option considered.

Noncircular gearing provides a greater variety
of possible motions than cam arrangements. It
allows linear or rotational input and also linear or
rotational output, usually with a greater range of

motion than a cam. To magnify the eccentricity,
there are even compound noncircular gears. They
are capable of transmitting power as well as
motion, and the wear distribution of noncireular
gearing is often better than a cam system for a
given lubricity. Manufacturing costs are higher

for noncircular gears if they are cut with a hob or

Elliptical.and other non circular gears.
Courtesy of Cunningham Industries, Inc.

shaper cutter, but for high-volume stamped,

molded, broached, Of extruded parts, the costs are
comparable to cam systems, Prototypes are often

cut by wire EDM.
The design starts the same way you would

design a cam, by knowing the required OUiput dis-

placement, velocities and accelerations, and cal-
culating the pitch curves accordingly .. The pitch
curves may be closed for continuous motion, or

open for motion limited to less than one revolu-

tion. This article starts with the assumption that
you have done the preliminary work and know
the pitch curve form. However, you may wish to
use the math presented here for trial and error

design work.
Noncircular gearing shares many characteris-

tics with both ordinary gearing and cams. The

pitch circles of ordinary gears roll together with-
out slipping and are tangent at the line of centers.

Similarly, the pitch curves of noncircular gears
roll without slipping and are tangent at the line of

centers. Noncircular gears maybe external or
internal. They can also be helical, although this
adds greatly to the complexity of their manufac-
ture. The universal law of gear tooth action
applie to both ordinary gearing and noncircular

gearing. This law states that the common normal
through the 'contact point of two gear teeth in
mesh must pass through the pitch pain! (the pitch
point being the contact point of the two pitch
curves). Applying this law determines the tooth
profile of a mating gear, whatever arbitrary tooth

profile may be chosen for the known gear. Also

note that if the tooth profile is such that the nor-
mal at some point does not intersect its pitch
curve, there is no solution for the mating tooth at

that point.
Ordinary gear are always associated with a

rack: form whose pitch line rolls with the gear

pitch circle ..Similarly, noncircular gears are asso-

dated with a rack whose pitch curve rolls with the
noncircular gear pitch curve. This rack: associa-
tion is important because two gear whicll
mesh with the opposite sides of a rack profile,



win mesh with each other. This implies that we
Oldy have to know the mathematical relation
between a gear and a rack instead of having to
know the relation between two gears.

Another aspect of tile rack is that, if the rack
teeth are straight- ided and all have the same
pressure angle, the center distance mounting of
the system is very forgiving-just like the mount-
ing of ordinary involute gears. Uefonunately
most designs have too much rise to allow this, and
the rack teeth pressure angles must vary to follow
the pitch curve. Because each nencireular gear
tooth is wedded to a particular mating gear or
rack space, the teeth do not need to be all alike.
There is [10 restraint 0[1 thethickness, height or
pitch of the teeth as long a ' a contact ratio of at
least one is maintained. Improved mesh may be
achieved if the gear's dedendum can be reduced
on parts of the p:itch curve that are closest to the
center of rotation. This relationship is very much
the same as in ordinary gearing where a rule of
thumb is that the ratio of Ute gear dedendum to
the gear pil,ch radius should be less than 0.14 to
avoid undercutting at the gear root.

Cams and noncircular gears also share a mini-
mum size restraint in their design. for cams, i.t is
a well-known fact that when the ratio of the total
ri e to the cam minor radiu increases toa critical

level,there will be a point where the pressure
.angle of Ute cam. system becomes unacceptably
large, Similarly, tor a noncjrcular gear, when the
ratio of the rise of the p.itch curve to the pitch
curve minimum radiu. increases to a critical
level,were will be a point where we angle of
obliquity becomes unacceptably large, 45 degrees
being 'the usual limit. A large angle of obliquiry
also makes it difficult to designproper-meshing
gear teeth.

The free-form definition of the pitch curve is
usually made in terms of line-arc geometry, bul it
could al 0 consist of one or more mathematical
functions. To apply 'the math, 'the curve must be
redefined. as a closely paced et of rectangular
coordinates for the rack curve or polar coordi-
nates for the gear curve. TYpically the spacing
will be about .0004 inches or .0005 radians. The
calculations are surprisingly simple ..

for our analysis, we will always usethe gear
center as the origin for bollI the gear fonn coordi-
nates and the rack form coordinates, The polar
coordinates for the gear pitch cUJVe do not have
the tandard 'textbook' configuration-c-angres
start at zero on the positive Y-axis and proceed
clockwise, Figure I shows the axis system with a
sample closed pitch curve consisting ofthreeare '.
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Fig ..J-Axis !lyslem and samp.lepitc.h cuneo

Fig. 2-Mating pitcl! curves..
and a line. The GLo sary (See sidebar) defines the
terms and symbols used. in Uris article .

If the given pitch curve is for a gear, then the
rack pitch curve is defined by the following algo-
rithm:
1. Select the first point (rg, 9g) on the gear pitch

curve and set the first rack pitch curve coor-
dinates: xrpl=O, yrpl:::rg.

2. If 9g equals zero then set XSHF=xrpl.
Set XSAV=xrpl, YSAV=yrpl, ASAV=Sg.
If there are no more points to. process then gil'

to. step 3.
Select the next point (rg, eg) on the gear pitch

curve and calculate the next rack pitch curve
coordinates:
xrpl",XSAV + YSAV· sine(8g-ASAV)., yrpl=rg.

Go to step 2 ..
3. Subtract XSHF from each xrpl coordinate.

Exit the algorithm.
If the given pilCh curve is for a rack, then the gear
pitch curve is defined by the {oUow.ing algorithm:
I. Select the fmc point (xrpl.yrpl) on we rack
pitch curve and set the firstgear pitch curve coor-
dinates: rg=yrpi , '8g=O..
2. If xrpl equals zero then set ROT = 9g.

If there are no. more points to process, then go
to. step 3.
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Original gear meshes with this side of rack profile

Fig. 4-Meshlllg noncircuiargears.
Set RSAV=rg, ASAV=9g, XSAV=:upl.
Select the next point (xrpJ,yrpl) on tile rack

pitch curve.
Calculate the next gear pitch curve coordi-

nates:
:tg=:yijJl,9g=ASAV + arc.sin«xxpI-XSAV)IRSAV)
Go to step 2.

3. Subtract ROT from each leg coordinate.
Exit the algorithm.
Note that to simplify step 2 of both. algorithms,

we have assumed there will be a xrpl or a 9g coor-
dinate of exactly zero. Since this is not ordinarily
the case unless you start at zero, you will need to
prescanthe (xrpl, yrpl) array or the (rg, Bg) array
and force a coordinate at zero using simple inter-
polation,

In both cases the resultant pitch curve coordi-
nates should be converted to' line-are geometry
using a curve-fitting utility and the length of the
pitch curve calculated. If it is not equal to the
length of the mating pitch curve within about
,000linches, then the coordinate point spacing
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should be reduced and the algorithm applied
again. These small increments simulate the calcu-
lus operation that would be applied to a pitch.
curve defined by a mathematical function,

Double precision arithmetic should be used in the
computer for these incremental summations in
order to avoid loss by rounding.

Figure 2 shows the rack pitch curve devel-
oped from the sample in Figure 1 as well as the
second mating gear pitch curve developed from
the rack pitch curve. In order to maintain the
same axis configuration, the rack pitch curve is
inverted and shifted vertically to calculate the
second mating gear pitch curve, Then the second
gear is reinserted to put it in running position
with the firs! gear.

Now we can position teeth along the rack pitch
curve. This can be done in several ways. The pre-
ferred method is to use a program to scan through
the (xrpl, yrp.l) array-starting at a measurement
that can represent the start of either a tooth or a
space, and then continuing to measure through
the array, altemale.ly findillg tooth and space posi-
tions at regular intervals. The measurement accu-
mulates from point to' point by calculating the
straight-line distance between points,ignoring
curvature. This usually requires interpolation
between adjacent coordinate points to find an
exact tooth position. The result is a. table of X, Y
coordinates along the rack pitch curve through
which the rack teeth must pass. This table is then
used in a CAD system to form the straight-sided
rack teeth in line-arc geometry, or because of the
simplicity of working with straight lines, a pro-
gram could be written to calculate the rack teeth
geometry. This rack tooth geometry should be

eontinuoua with rootelements and tip elements
connecting the flanks. If the corresponding mat-
ing gear pitch curve is closed, which signifies a
complete revolution, there should be an integral
number of teeth whose spacing can be calculated,
by dividing the length of the pitch curve by the
desired number of teeth. The origin for the rack
teeth geometry must be at the center of the gear.
Figure 3 shows the rack. teeth laid out on its pitch
curve. The following data can now be used to cal-
cuiate the mating teeth form:
1, The rack pitch curve form expressed in line

arc format
2. The rack teeth geometry expressed as an array

of closely spaced (xrt, yrt) coordinates with
slope srt. In practice, YOII don't need togen-
eratethis array at all. Using line-arc format for
the rack. tooth geometry. pick off one (xrt,
yrt, srt) point at a Lime from the line-arc ele-
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the process by assuming that there will be only !
one intersection point You may need to consider I Ir------------------.
the possibility of two or more intersections. If !

I
there is more than one intersection, only one of !
them wil.l be correct. You wiU need to pI10gram an
inner loop in which separate (xgt, ygt) pairs are
calculated for each intersection and then the pair
which is closest to the previous point is chosen.
The best technique for searching the pitch curve
for the intersection point is to start the scan on H you would IIka to rupond to 1hII or any other .!'ti-
the pitch curve segment closest to the xrt valee cia In this edition of 6", T.chnology, pit ... fax
under consideration. Tlien alternately scan the your mponn to the 8lt8nlion of Chartes Cooper,
segments left and right of the starting segrnem, ! II...,;;s,;"sn;,;;io;;,;r..,;ecI;,.;;;.;ito;;,;(.:..' 1t:.;,.:84..:,;7;".-437.:.::.;,..;;-I8;.:;,',;.:8:.;,.. .J

ments as the program loop is processed.
3. The xrplarray of rack pitch ClUVecoordinates

calculated earlier.
4. The 9g array of gear pitch ClUVecoordinates

calculated. earlier.
The combined! (xrpl, 9g) array represented by 3

and 4 above is a one-to-one 'correspondence of
rack translation and gear rotation. Use the follow-
ing algorithm to find the fonn of the mating teeth
expressed as the (xgt ygt) array:
1. Select a point. (xn, yrt, srt). If there are no more

points then exit,
2. Calculate the slope of the normal through (xrt,

yrt): sn=-]/srt. Thi now defines the normal as
a line through (xrt, yrt) with slope sn,

3. Calculate the inter ection point (xi, yi) where
the normal intersects the rack pitch CUl'Ve •.(Use
a routine that calculates the intersection point
of either two lines or a line and circle. The
pitch curve is operated on one segment at a
time and checked. to see wltether the interse-
tion lies within the: segment. boundaries. If it
does. lhe intersection has been found .. The
original array of (xrp],yrpn points could also
be used to find the intersection instead of using
its line-arc equivalent.)

4. Scan the xrpl array to find the ilndex.lX,. in the
array where xrpl equals xi •. which will most
likely lie between two adjacent values in lite
xJPI may. Use linear interpolation to fi d the
fractional posmon: FRACTION =
(xi - x.rpl(IX» I (xrpl(IX+l) - xrpl.(IX» •.

5. Find the corresponding angle in the 8g array:
ANGLE"" 8g(IX.) + .FRACT'ION * (8g(lX+l)
- 9g(IX»

6. Calculate the gear tooth coordinates:
xgt=(xrt-xi.) • cosine(ANGLE) + yrt •
sine{ANGLE)
ygt=yrt • cosine(ANGLE) - (xrt-xi) •
sine(ANGLE)

1. Go to step 1
to step 3 of the algorithm, we have simplified

This gives you the best chance of finding the
correct intersection first

There may be intersect:ion points (xi,yi)
mi sed becausethe rack pitch curve is not wide
enough. If the curve corresponds exactly to a
complete revolutiou of the mating gear, then a
portion of the end of the rack pitch curve should
'be copied. horizontally shifted and appended to
the beginning. A portion of the beginning should
be copied, horizoatally shifted and appended to
the end, The shift value applied to the copied
portions should be the exact X-extent of the
pitch curve. Each portion should be long enough
to contain about 3 teeth. The program needs to

realize when it has found an intersection in the
extended range so that,. before searching for a
match in the (xrpl, eg) array, xi will have the
shift value added or subtracted. Only adjust xi
for this search, not for caleulations in step 6. of
thealgoritllm.

The gear teeth array (xgt.ygO is processed
through a curve-fitting utility to provide line-arc
geometry output and then through a smoothing
utility to remove the loops which most onen
result from tooth generation. Figure 4 shows the
two noncircular mating gears, each of which had
their teeth generated by the rack teeth of Figure 3.

If you go through the effort of applying the
math of this article to your own computer pro-
gram,a good test of the system is to form a
straight. horizontaliline rack pitch curve wilhurn-
fonn straight-sided rack teeth. The resultant out-
put should be an ordinary involute gear. 0
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