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Introduction
Conical involute gears, also known as beveloid gears, 

are generalized involute gears that have the two fl anks of the 
same tooth characterized by different base cylinder radii and 
different base helix angles (Refs. 1– 4). Beveloid gears can be 
mounted on parallel-, intersecting- or skew-axis shafts. They 
can be cheaply manufactured by resorting to the same cutting 
machines and tools employed to generate conventional, involute 
helical gears. The only critical aspect of a beveloid gear pair, 
i.e., the theoretical punctiform (single-point) contact between 
the fl anks of meshing gears, can be offset by a careful choice 
of the geometric parameters of a gear pair (Refs. 5–7). On the 
other hand, the localized contact between beveloid gear teeth 
comes in handy should the shaft axes be subject to a moderate, 
relative position change in assembly or operation. 
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Management Summary
It is the intent of this presentation to determine 

all rigid-body positions of two conical involutes that 
mesh together, with no backlash. That information 
then serves to provide a simple, general approach in 
arriving at two key setting parameters for a hobbing 
machine when cutting a conical (beveloid) gear. 
A numerical example will show application of the 
presented results in a case study scenario. Conical 
involute gears are commonly seen in gearboxes 
for medium-size marine applications—onboard 
engines with horizontal crankshafts and slightly 
sloped propeller axes—and in automatic packaging 
applications to connect shafts with concurrent axes 
whenever the angle between these axes is very small 
(a few degrees).

The technical literature contains plenty of information 
regarding the tooth fl ank geometry (Refs. 8–9) and the setting 
of a hobbing machine in order to generate a beveloid gear 
(Refs. 10–15). Unfortunately, the formalism usually adopted 
makes determination of the hobbing parameters a rather 
involved process, mainly because the geometry of a beveloid 
gear is customarily—though ineffi ciently—specifi ed by 
resorting to the relative placement of the gear with respect 
to the standard rack cutter that would generate the gear, even 
if the gear is to be generated by a different cutting tool. To 
make things worse, some of the cited papers on beveloid gear 
hobbing are hard reading due to printing errors in formulae 
and fi gures. 

This paper presents an original method to compute the 
parameters that defi ne the relative movement of a hob with 
respect to the beveloid gear being generated. Pivotal to the 
proposed method, together with a straightforward description 
of a beveloid gear in terms of its basic geometric features, is 
the determination of the set or relative rigid-body positions 
of two tightly meshing beveloid gears. Based on this set of 
relative positions, the paper shows how to assess the rate of 
change of the hob-work shaft axis distance as the hob is fed 
across the work, as well as the rate of the additional rotation 
of the hob relative to the gear. These parameters have to be 
entered into the controller of a CNC hobbing machine in order 
to generate a given beveloid gear. 

The proposed method also can be applied to the grinding of 
beveloid gears by the continuous generating grinding process. 
Furthermore, it can be extended to encompass the cases of 
swivel angle modifi cation and hob shifting during hobbing. 

Lines of Contact
The hob that generates a beveloid gear in a hobbing 

machining process can be considered an involute gear. Most 
commonly, such a gear is of the cylindrical type, although 
adoption of a conical involute hob would be possible too, in 
principle. For this reason, the kinematics of hobbing will be 
presented in this paper by referring to a beveloid hob, and 



www.geartechnology.com     July  2008      GEARTECHNOLOGY 00

(4) 

Owing to Equation 4, the following equations and ensuing 
text and fi gures will refer to the normal base pitch of right-hand 
and left-hand fl anks of both gears as p1 and p–1 respectively. 

The common perpendicular to the axes of a pair of 
meshing beveloid gears intersects the axes themselves at 
points A1 and A2 (Fig. 2). The relative position of these axes 
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Figure 1. Basic dimensions of beveloid gear     . Gi

subsequently specialized to the case of a cylindrical hob. 
This section introduces the nomenclature adopted in the 

paper and summarizes known results pertaining to the loci of 
contact of a conical involute gear set. The reader is referred 
to References 16 and 17 for a detailed explanation of the 
reported concepts and formulas. 

The tooth fl anks of a conical involute gear are portions 
of involute helicoids. As opposed to classical helical involute 
gears, the two helicoids of the same tooth of a conical involute 
gear do not generally stem from the same base cylinder, nor 
have the same lead. 

In a beveloid gear set composed of gears G1 and G2, the 
axis of gear G1 is here directed in either way by unit vector 
n1. The orientation of the axis of gear G2 by unit vector n2 
is then so chosen as to make the right-hand fl anks of gear 
G1 come into contact with the right-hand fl anks of gear G2. 
With reference to Figure 1, the distinction between right-hand 
and left-hand tooth fl anks is possible based on the sign of the 
ensuing quantity: 

(1) 

where Fi is a point on a tooth fl ank of gear Gi (i=1, 2), Oi is a 
point on the axis of gear Gi, and qi is the outward-pointing unit 
vector perpendicular to the tooth fl ank at Fi. A tooth fl ank is a 
right-hand or left-hand fl ank, depending on whether Equation 
1 results in a positive or, respectively, negative quantity. (In 
Figure 1, point Fi lies on a right-hand fl ank of gear Gi). In the 
sequel, index j will be systematically used to refer to right-
hand (j = + 1) or left-hand (j = −1) tooth fl anks. 

The basic geometry of gear Gi (i=1, 2) is defi ned by its 
number of teeth Ni, the radii ρi,j (j = ± 1) of its base cylinders, 
the base helix angles βi,j of its involute helicoids (βi,j< 
π/2; βi,j > 0 for right-handed helicoids), and the base angular 
thickness ϕ′i of its teeth at a specifi ed cross section. All these 
parameters—with the exception of Ni—are reported in Figure 
1, which also shows the involute helicoids as stretching 
inwards up to their base cylinders, irrespective of their actual 
radial extent. 

The normal base pitch is the distance between homologous 
involute helicoids of adjacent teeth of the same gear. A 
beveloid gear has two normal base pitches—pi,1 and pi,–1—
one for right-hand fl anks and one for left-hand fl anks. Their 
expression is: 

(2) 
where

(3) 

Two beveloid gears can mesh only if they have the same 
normal base pitches, i.e., only if the ensuing conditions are 
satisfi ed: 
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Figure 2—The lines of contact.

continued
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(8) 

(9) 

(10) 

(11) 

The function sign(.) in Equation 10 returns the value + 1, 
0, or –1 depending on whether its argument is positive, zero 
or negative. In Figure 3, angle θi,1 is positive, whereas angle 
θi,–1 is negative. 

Due to the square root in Equation 6, two beveloid gears 
can properly mesh only if condition 

(12) 

is satisfi ed for both values of j. In the following equations, 
text and fi gures Equation 12 will be supposed as holding. 

Thanks to Equations 5 and 6, angle θi,j can be expressed 
as: 

(13) 

(i=1,2; h= 3 – i; j= ± 1). 
The z-coordinate bi,j of point Pi,j in reference frame Wi

(i=1,2; j= ± 1) is given by: 

b1,j=

(14) 

Based on the relative positions of reference frames W1 and 
W2, together with the cylindrical coordinates ρi,j, θi,j, and bi,j of 
points Pi,j with respect to Wi (i=1,2; j= ± 1), the length σj of the 
line of contact P1,jP2,j can be determined by  (Refs. 16–17): 

(15) 

The results summarized so far are directly applicable to 
a conventional beveloid gear set, i.e., to a pair of meshing 
beveloid gears that revolve about their rigidly connected axes. 
They also represent a convenient starting point for determining 
all possible relative positions of a beveloid hob relative to the 
beveloid gear being machined. 

A Backlash-Free Beveloid Gear Set
Due to the single-point contact between tooth fl anks of a 

beveloid gear set, the assortment of rigid-body positions of 
a beveloid hob relative to the beveloid gear being machined 
cannot be confi ned to the simple infi nity of relative positions 
of two gears in a conventional beveloid gear set. Otherwise, 
a gear machined by a beveloid hob would not have involute 
helicoidal fl anks; rather, only one curve on these fl anks would 

is defi ned by their mutual distance a0, together with their 
relative inclination α0. Specifi cally, angle α0 is the amplitude 
of the virtual rotation—positive if counterclockwise—about 
vector (A2–A1) that would make unit vector n1 align with unit 
vector n2. Two fi xed Cartesian reference frames Wi (i =1, 2) 
are then introduced with origins at points Ai, xi axis pointing 
towards A3– i, and zi axis directed as unit vector ni. 

For a conventional beveloid gear set composed of two 
meshing conical involute gears that revolve about their fi xed 
and non-parallel axes, the locus of possible points of contact 
between the involute helicoids of right-hand (left-hand) fl anks 
is a line segment that has a defi nite position with respect to 
either of reference frames Wi (i=1, 2). More specifi cally, the 
line of contact is tangent at its ending points P1,1 and P2,1 
(P1,–1 and P2,–1) to the base cylinders of the right-hand (left-
hand) fl anks of the two gears. This is true even if the actual 
tooth fl anks—being limited portions of the above-mentioned 
involute helicoids—touch each other along line segments that 
are shorter than the above-mentioned lines of contact and 
superimposed on them. 

The cosine and sine of the angle θi,j that the projection of 
vector (Pi,j –Ai) on the xy-plane of reference frame Wi forms 
with the x-axis of Wi (see Fig. 3) are indirectly provided by: 

(5) 

(6)

where 

(7) 

58

�i,1

Pi,1

xi

Aiyi

Pi, –1

P3–i, –1 P3–i,1

�i, –1

�i, –1�i,1
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belong to the desired involute helicoids. 
Therefore the double infi nity of points on a tooth fl ank of a 

beveloid gear machined by a beveloid hob has to be obtained 
at least as a two-parameter envelope of the positions of the 
hob tooth fl anks. Each of these positions must correspond to 
a meshing confi guration—with no backlash—of the beveloid 
hob with the fi nished beveloid gear. 

There is a quadruple infi nity of confi gurations of a beveloid 
gear tightly meshing with a beveloid hob (the contacts between 
right-hand fl anks, as well as the contacts between left-hand 
fl anks, each diminish by one the original six degrees of free-
dom that possess, in principle, a freely-movable hob that does 
not touch the gear). The double infi nity of rigid-body positions 
of the hob relative to the generated gear is only a subset of 
the quadruple-infi nity possible meshing confi gurations. This 
latter set of confi gurations can be found by fi rst determining 
the simple infi nity of all relative rigid-body positions of two 
beveloid gears tightly meshing in a conventional gear set, 
which is just the scope of the present section. 

With regards to the same set of beveloid gears considered 
in the previous section, let ϕ0i be the common-normal angular 
base thickness of a tooth of gear Gi (i=1, 2), i.e., the angular 
base thickness at the cross-section of gear Gi through point Ai 
(Figs. 1 and 2). On a generic cross-section identifi ed by the 
axial coordinate zi, the tooth angular base thickness ϕi′ of a 
tooth of gear Gi is given by 

(16)
 
In this equation, quantity ki,j is defi ned as
 

(17)
 
Incidentally, ki,j can be given a geometric meaning: If the 

base helix of an involute helicoid j of gear Gi is projected 
on the unitary-radius cylinder coaxial with the gear, then the 
resulting projection is a helix whose inclination angle with 
respect to the gear axis is tan–1ki,j. 

If the surface of the unitary-radius cylinder of gear Gi is 
now cut along the generator that intersects the negative x-axis 
of reference frame Wi (Fig. 2), and subsequently fl attened 
(Fig. 4), the former projections of the base helices of a tooth 
of gear Gi appear as straight lines. In Figure 4, coordinate 
δi—measured from the generator that intersects the positive x-
axis of Wi—parameterizes the generators of the unitary-radius 
cylinder associated with gear Gi. The common-normal angular 
base tooth thickness ϕ0i is also shown in Figure 4, together 
with the point Hi of intersection of the common normal A1A2 
with the unitary-radius cylinder of gear Gi. 

The orientations of gears G1 and G2 about their respective 
axes are defi ned here by considering an arbitrarily selected 
reference right-hand fl ank (involute helicoid) Σ1,1 on gear G1, 
together with the right-hand fl ank (involute helicoid) Σ2,1 of 
the tooth of gear G2 in contact with Σ1,1. The reference angular 
position of gear Gi is chosen here as characterized by helicoid 

Σi,1 intersecting the minimum distance segment A1A2 (Fig. 2) 
at a point of the base cylinder of gear Gi (i=1,2). (Equivalently, 
at the reference angular position of gear Gi the projection of 
the base helix of Σi,1 on the unitary-radius cylinder of the gear 
goes through point Hi.) A generic angular position of gear Gi

is then identifi ed by the angle γ0i of the rotation that carries 
the gear from its reference angular position to the considered 
position. Angle γ0i—positive for a counterclockwise rotation 
with respect to unit vector ni (Fig. 2), can also be highlighted 
on the developed unitary-radius cylinder (Fig. 4). 

The angular positions γ01 and γ02 of two beveloid gears that 
mesh together with zero backlash are clearly interrelated. An 
obvious mutual constraint is the differential condition that 
stems from expressing the gear ratio in terms of the number 
of teeth Ni (i=1,2) of the two gears 

(18) 

In order to fi nd a fi nite relation between γ01 and γ02, two 
maneuvers are envisaged. The fi rst maneuver starts with 
the fi rst gear at position γ01= 0 and—by exploiting the tooth 
contact between right-hand fl anks only—carries the second 
gear at position γ02= 0. The second maneuver is similar to the 
fi rst one, but for the reliance on the contact between left-hand 
fl anks. 

The fi rst step of the fi rst maneuver consists of making 
the reference involute helicoid Σ1,1 of gear G1 go through the 
extremity P1,1 of the line of contact between helicoids of right-
hand fl anks (Fig. 2). The corresponding rotation ∆γ01a of gear 
G1 is given by 

(19)

where θ1,1 and b1,1 are provided by Equations 13 and 14, 
respectively. Equation 19 can be justifi ed by elementary 
geometric reasoning on the unitary-radius cylinder of gear G1. 
(The reader is referred to Reference 16 for further details.) 

The second step makes helicoid Σ1,1 go through point P2,1. 
The necessary rotation of gear G1 is 
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(20) 

Now helicoids Σ1,1 and Σ2,1 touch each other at P2,1. By the 
third—and last—step, gear G2 is so turned about its axis as 
to make the base helix of helicoid Σ2,1 intersect the common 
normal A1A2. The corresponding rotation of gear G2 is given 
by 

(21) 

At the end of the considered three-step maneuver, gear 
G2 is at its reference position (γ02 = 0), whereas gear G1 is at a 
position identifi ed by 

(22)

Owing to Equation 18, and to the existence of a meshing 
confi guration characterized by (γ01, γ02 ) = (∆γ′01, 0) , the 
ensuing relation between γ01 and γ02 must be satisfi ed 

(23)

Now the second maneuver is taken into account. Its fi rst 
step consists of bringing gear G1 from the reference angular 
position to the position where helicoid Σ1,–1 goes through point 
P1,–1. Here Σ1,–1 is the helicoid that, together with the reference 
helicoid Σ1,1 defi ned above, bounds the same tooth of gear G1. 
The corresponding rotation of gear G1 is (see Figs. 2–4): 

(24)

By the second step, gear G1 is revolved until helicoid Σ1,–1 
goes through point P2,–1. The incremental rotation of gear G1 
is provided by 

(25) 

After this step, the helicoid Σ1,–1 of gear G1 touches the 
helicoid Σ2,–1 of gear G2 at point P2,–1. It is worth observing 
that, while Σ1,1 and Σ1,–1 bound the same tooth of gear G1, Σ2,1 
and Σ2,–1 delimit the same tooth space of gear G2. 

The third step of the current maneuver consists in making 
helicoid Σ2,–1 intersect the common normal A1 A2 at a point of 
its base helix. The additional rotation of gear G2 is provided 
by 

(26) 

The fourth—and last—step brings gear G2 at the reference 
position γ02 = 0, i.e., makes helicoid Σ2,1 intersect the common 
normal A1A2 at a point of the base helix. The corresponding 
further rotation of gear G2 is 

(27)

The angular position of gear G1 at the end of the whole 
maneuver is provided by 

(28)

Therefore in addition to Equation 23, another constraint 
between γ01 and γ02 can be found 

(29)

By considering the expressions of ∆γ'01and ∆γ"01 provided by 
Equations 22 and 28, Equations 23 and 29 can be rewritten as 

(30)

(31)

Quantities B' and B" that appear in these equations are 
given by 

(32)

(33)

For a given backlash-free beveloid gear set, Equations 30 
and 31 must be satisfi ed simultaneously. Since the considered 
gear set is a mechanism with one degree of freedom, it should 
be possible to arbitrarily select γ01 (or γ02), and then determine 
γ02 (or γ01). Therefore Equations 30 and 31, when considered 
as linear equations in γ01 and γ02, should be linearly dependent. 
This requirement translates into the ensuing condition: 

(34) 

By taking into account Equations 32 and 33, Equation 34 
can be rewritten as follows (Ref. 16): 

(35) 

where 

(36) 

and 

(37) 

Equivalent to the equation set composed of Equations 
30 and 31, the equation set formed by Equations 30 and 35 
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continued

encapsulates the meshing condition—with no backlash—of 
a pair of conical involute gears, each bound to revolve about 
its own axis. More specifi cally, Equation 35 involves the 
geometry of the two beveloid gears, together with the relative 
placement of the two gear axes and the axial placement of 
each gear on its own axis. It had already been presented, 
though in a slightly different form, in Reference 16. On the 
other hand, by also encompassing the angular position of 
the two gears, Equation 30 provides information about their 
phasing. To this author’s knowledge, no such equation has 
ever been published before. 

Unconstrained Beveloid Gears in Tight Mesh
As anticipated at the beginning of the previous section, the 

whole collection of relative rigid-body positions of two tightly 
meshing beveloid gears can be determined by generalizing the 
results just found for a conventional beveloid gear set. 

Let us consider again a beveloid gear set, composed of 
two meshing beveloid gears connected to a rigid frame 
through revolute pairs. If the distance a0 and angle α0 
between the revolute pair axes, together with the geometry 
of the two gears—notably their common-normal base angular 
thicknesses ϕ01 and ϕ02—comply with Equation 35, then 
Equation 30 is satisfi ed by a simple infi nity of values for the 
ordered pair (γ01, γ02), i.e., the mechanism has a simple infi nity 
of confi gurations. 

Now the two mentioned revolute pairs are replaced by 
cylindrical pairs, which implies that both gears can be displaced 
along their axes, in addition to being revolved about them. 
Consequently, the common-normal base angular thickness ϕ0i 
of gear Gi, i.e., the base angular thickness on a cross section 
of gear Gi going through point Ai (Fig. 2), becomes linearly 
dependent on the axial placement of the gear. With the aid of 
Figure 5, the ensuing condition can be laid down (See also 
Eq. 16)

(38) 

In this equation, ϕi is the reference base angular thickness 
of gear Gi, i.e., the base angular thickness of a tooth of gear Gi 
at a reference cross section fi xed to the gear. Moreover, ζi is the 
displacement of the common-normal cross section, measured 
from the reference cross section, positive if concordant with 
the direction of the z-axis of reference frame Wi (a positive ζi 
is shown in Figure 5). 

Quantity γ0i is no longer suited to parameterize the angular 
position of gear Gi. For instance, if γ0i = 0 and gear Gi is axially 
displaced, then the base helix of the reference helicoid Σi,1 
keeps intersecting the minimum distance segment A1A2, which 
means that the gear undergoes a screw motion with respect to 
the rigid gear-set frame, thus changing its orientation. 

Henceforth the angular position of gear Gi will be 
parameterized by angle γi, which is an angle measured on the 
reference cross section of the gear. Precisely, γi is the angle 
between two lines belonging to the reference cross section 
of gear Gi—the projection of the minimum distance segment 

A1A2, and the radial line through the point on the base helix 
of reference fl ank Σi,1. As shown in Figure 5, the following 
relation exists between γ0i and γi 

(39) 

By taking into account Equations 38 and 39, Equations 
35 and 30 are transformed into a set of two equations in the 
four unknowns ζ1, ζ2, γ1 and γ2. It is generally possible to 
arbitrarily choose either of γi (i=1,2) and either of ζi (i=1,2), 
and then determine the remaining two unknowns. Therefore a 
set of two beveloid gears connected to the frame by cylindrical 
pairs has two degrees of freedom, with no need to satisfy any 
prerequisite similar to Equation 35. 

At this point, the frame of the gear set is suppressed 
altogether, so that parameters a0 and α0 are no longer bound to 
be constant. We are now left with two beveloid gears that can 
be freely moved in space, provided that they keep meshing 
with no backlash. All relative rigid-body positions of the two 
gears are those satisfying Equations 35 and 30, which can be 
rewritten in the ensuing concise form 

(40) 

In Equation 40, U and V are, respectively, what the left-
hand sides of Equations 35 and 30 turn into, once ϕ0i and γ0i

(i=1,2) have been replaced with the expressions provided by 
Equations 38 and 39. 

Equation 40 is a set of two conditions in six unknowns, 
namely, a0, α0, ζ1, ζ2, γ1 and γ2. Therefore, Equation 40 can be 
solved in a quadruple infi nity of ways, which means that there 
is a quadruple infi nity of possible relative placements for the 
two beveloid gears. 

As explained hereafter, each of these relative placements 
can be determined by relying on the values of a0, α0, ζ1, ζ2, γ1 
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and γ2. At fi rst, a skeleton is built based on a0 and α0. Such a 
skeleton is formed by the axes of the two gears, together with 
the common normal segment A1A2 (Fig. 2). Subsequently gear 
Gi (i= 1,2) is axially placed on its axis by relying on the value of 
ζ1. Finally, the orientation of gear Gi about its axis—and with 
respect to the skeleton segment A1A2—is provided by angle γi. 

Equation 40 will prove pivotal in computing the hobbing 
parameters of a beveloid gear. 

Gear-Hob Relative Movements
As already mentioned at the beginning of the section 

addressing a backlash-free beveloid gear set, the tooth fl anks 
of a beveloid gear result from a two-parameter envelope 
by the hob thread fl anks. The double-infi nite subset of the 
quadruple infi nity of possible gear-hob relative placements 
is chosen here on the analogy of the hobbing operation of a 
cylindrical gear by a cylindrical hob. Throughout this section, 
the generated gear and the enveloping hob will be referred to 
as gear G1 and G2 respectively. 

As is known, a cylindrical gear can be hobbed by keeping 
constant the work-hob axis angle α0, by revolving the hob 
about its axis, and by simultaneously moving such an axis 
across the gear width. In case no hob shift takes place during 
hobbing—as usually happens—parameter ζ2 is kept constant 
too. If the gear and the hob are both cylindrical, it is easy to 
prove that function U in Equation 40 is deprived of arguments 
ζ1 and ζ2. Therefore, the constancy of the shaft angle α0 
implies the constancy of the axis distance a0, too; parameters 
γ1 and ζ1 can be thought of as the two parameters of the 
enveloping process. And for any choice of their values, the 
second condition in Equation 40 yields quantity γ2. 

Now the hobbing of a beveloid gear by a beveloid hob is 
analyzed. Similar to the previous case, the shaft angle α0 is 
supposed as constant. Its value might be chosen, for instance, 
with the aim of minimizing the shaft axis distance a0 at a given 
cross-section of the gear (see, for instance, Reference 17 for 
application of this criterion to the hobbing of cylindrical 
gears). The independent parameters of the envelope are again 
γ1 and ζ1, whereas parameter ζ2 is kept constant. For any 
choice of γ1 and ζ1, the fi rst and second conditions in Equation 
40 yield, respectively, the values of a0 and γ2. 

The instantaneous movement of the hob relative to the 
gear being machined can be thought of as the superimposition 
of two movements: 

1.  The relative movement of hob and gear as they revolve 
about their axes (only the independent envelope parameter γ1 
varies)

2.  The relative movement of hob and gear when the gear 
is shifted along its axis without turning with respect to the 
hobbing machine (only the independent envelope parameter 
ζ1 varies) 

Since the former movement can be found straightforwardly 
via Equation 18, only determination of the latter will be pursued 
here. More specifi cally, the ensuing ratios of differentials are 
of interest 

(41

The differentials on the right-hand sides of Equation 41 
are computed with these assumptions 

(42)

Ratio ƒ
a
 is the rate of change of the gear-hob axis distance 

as the hob is moved along the gear width; it is zero for 
cylindrical gears, but not so for beveloid gears. Ratio ƒγ, on 
the other hand, provides information about the hob rotation 
as the hob is fed across the work. It would be zero for a spur 
gear, but is different from zero for helical gears and for most 
beveloid gears. 

To compute ratios ƒ
a
 and ƒγ, Equation 40 is now 

differentiated by taking into account Equation 42 

(43) 

Based on Equation 43, the ensuing expression for quantities 
ƒ
a
 and ƒγ can be obtained 

(44) 

(45) 

The partial derivatives in Equations 44 and 45 can be 
easily computed as shown hereafter. The partial derivative of 
U with respect to a0 is given by the ensuing concatenation of 
relations 

(46) 

(47) 

(48)

(49) 

(50) 

As for the partial derivative of U with respect to ζ1, it is 
provided by 
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(51) 

(52) 

(53) 

The partial derivative of V with respect to a0 is given by 

(54) 

The derivatives on the right-hand side of this equation are in 
turn provided by Equations 49 and 50. 

Finally, the partial derivative of V with respect to ζ1 and γ2 
can be easily determined based on Equations 30 and 39: 

(55) 

(56) 

Thanks to Equations 46–55, the ratios fa and fγ can be re written 
in the ensuing explicit form: 

(57) 

(58) 

Quantities Dj (j= ± 1) in Equations 57 and 58 are defi ned by: 

(59) 

Equations 57–59 show that ƒ
a
 and ƒγ, do not depend on ζ1, 

but only on the geometry of gear and hob, together with the 
swivel angle α0 (which has been supposed as constant). The 
constancy of ƒ

a
, in particular, explains why the root surface 

of a beveloid gear is conical—at least if the gear is cut by 
keeping constant the angle α0. 

Equation 59 provides the expression of Dj (j= ± 1) for any 
pair of beveloid gears. When gear G2 is a hob, the number 
of teeth N2 is small and the absolute values of the base helix 
angles β2,1 and β2,−1 are relatively large. Therefore the ensuing 
inequality is generally satisfi ed 

(60) 

Consequently, Equation 10 reduces to 

(61) 

In addition, since the most commonly used hobs can be 

considered as involute cylindrical gears rather than beveloid 
gears, the ensuing additional conditions come into play 

(62) 

The values of ratios ƒ
a
 and ƒγ, are always needed when 

programming a CNC hobbing machine that has to cut a 
beveloid gear. Thanks to Equations 57 and 58, these ratios can 
be straightforwardly assessed. Therefore, from a utilitarian 
standpoint, Equations 57 and 58 are the main result of this 
paper. 

Should angle α0 change while ζ1 varies (for instance, to 
constantly minimize the shaft distance a0), and/or hob shifting 
occur during machining (for instance, to reduce the scalloping 
of the tooth fl anks of the gear), then the mentioned equations 
would no longer be applicable. In this occurrence, Equation 
40—the true theoretical contribution of this paper—should be 
resorted to again, and applied afresh to the case at hand. 

Numerical Example
The formulae derived in the previous section are here 

applied to determine quantities ƒ
a
 and ƒγ for the hobbing of a 

beveloid gear (gear G1) by a cylindrical hob (gear G2). 
Throughout this section, non-integer quantities are 

expressed by a high number of digits—all meaningful—in 
order to allow the reader to accurately check the reported 
result. 

The hob has one thread (N2 = 1) and is characterized by 
a module of 2 mm and a pressure angle of 20°. Based on this 
data, the ensuing dimensions can be easily computed 

ρ2,1= ρ2,–1= 2.735229431127 mm 

β2,1= β2,–1= 69.90659103379 deg 

ϕ2 = 1220.353746100 deg 

The normal base pitches of hob and gear can be derived 
from the geometry of the hob 

p1= p-1= 5.904262868187 mm 

The gear is characterized by 

N1=14 

ρ1,1 = 13.16838183156 mm 

ρ1,-1 = 13.15931278723 mm 

β1,1 = –2.515092347823 deg 

β1,-1 = –1.343231785965 deg 

On a given (reference) cross section of the gear, the 
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angular base thickness of the gear teeth is: 

ϕ1= 16.94800000000 deg 

The angle α0 between the axes of gear and hob is chosen 
in such a way as to minimize the shaft distance a0 when point 
A1 (Fig. 2) lies on the mentioned reference cross section of the 
gear. The corresponding values of α0 and a0 are: 

α0 = –86.03648170877 deg 

a0 = 43.96806431329 mm 

The ratio fa between the change of axis distance a0 and the 
displacement ζ1 of point A1 (Figs. 2 and 5) along the gear axis 
is provided by Equation 57 

ƒa = 0.02988732132842 mm/mm 

On the other hand, the ratio ƒγ between the rotation angle 
of the hob and the displacement ζ1 of point A1 along the 
gear axis—when the gear does not rotate with respect to the 
hobbing machine—is provided by Equation 58 

ƒγ = 2.050765894724 deg/mm 

(To obtain this value, a conversion of unit of measurement 
has been necessary, since the ratio ƒγ yielded by Equation 58 
is expressed in radians per unit of length.) 

Conclusions
With reference to the generation of a beveloid gear by a 

hobbing machine, the paper has presented a simple and general 
method to determine the rate of change of the hob-work axis 
distance and the differential rotation of the hob as the hob itself 
is fed across the work. Because it relies on a very few intrinsic 
dimensions of a beveloid gear, the method is conducive to 
concise expressions for the desired quantities. 

The results presented here refer primarily to the hobbing 
of a beveloid gear by a beveloid hob, provided that the swivel 
angle remains constant. On the one hand, they can be readily 
specialized to the case of a cylindrical hob cutting a beveloid 
gear. On the other hand, it is easy to extend them to make 
provision for hob shifting and swivel angle change during 
hobbing. 
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