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Introduction
To increase cost efficiency in wind turbines, the wind industry 
has seen a significant rise in power density and an increase in 
the overall size of geared components. Current designs for mul-
timegawatt turbines demand levelized cost of energy (LCOE) 
reduction, and the gearbox is a key part of this process.

It is feasible to reach beyond the current industry limit of 
200 Nm/kg torque density barrier with a combination of tech-
nology, improved design, optimized materials, and surface 
engineering (Fig. 1).

Since fatigue failures nearly always occur at or near the sur-
face, where the stresses are greatest, the surface condition 
strongly affects the gear life. Consequently, an improved surface 
condition effectively avoids major redesign or increased mate-
rial cost due to an increase in part size.

Additional finishing methods such as shot peening (SP) and 
superfinishing (SF) significantly increase the gear load capacity, 
but these effects have not yet been adequately considered in the 
current ISO 6336 standard or in any other gear standards.

The combination of SP followed by SF will be described here 
as an “improved gear surface” (IGS).

Defining SP
The objective of SP is to induce compressive residual stresses 
in the near-surface layer of a part. This occurs by a propelled 
stream of spherical shots, often called media. Each impact of the 
shot media has the effect of leaving a small hemisphere or dim-
ple and compressive residual stresses that occur from localized 
yielding of the base material at the point of shot impact.

SP is a controlled process, and according to ISO 6336-5 (Ref. 
1), the recommended minimum control should be based on 
SAE AMS 2430 (Ref. 3), SAE AMS 2432 (Ref. 4) or SAE J 2441 

(Ref. 5). SP should not be confused with mechanical cleaning 
operations or shot blasting.

There are four main parameters to specify and control SP: 
media hardness, media size, intensity, and coverage.

Defining SF
SF is a polishing process that removes surface roughness 
peaks due to a relative movement between the workpiece and 
an abrasive media in a vibrating barrel (bowls or tubes). The 
reduction in roughness depends on the initial roughness and 
processing time.

SF can be subdivided into mechanically and chemically accel-
erated processes.

Combined Effect of SP + SF (IGS)
SP can be detrimental to surface durability due to an increase in 
surface roughness. It may therefore be required to refinish the 
tooth flanks to achieve the specified surface finish and texture, 
as stated in ISO 6336-5 (Ref. 1). 

Post-SP processes are allowed, but, in general, can alter the 
residual compressive stress obtained by SP.

SF reduces the surface roughness without significantly chang-
ing the residual stress state below the surface because of the 
small amount of material removed. Therefore, SF allows pres-
ervation of the compressive residual stresses induced by an SP 
process and improves flank surface roughness requirements.

Case Study Measurements and Results
An estimation of the torque density increase using SP followed 
by an SF process is studied in this paper based on surface and 
residual stress measurements for a multimegawatt case-carbu-
rized planet wheel gear of material 18CrNiMo7-6 with material 

Figure 1 Gearbox torque density increase.
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quality grade MQ-a according to ISO 6336-5 (Ref. 1) and gear 
module mn=20.5 mm.

For these investigations, a standard ground finished planet 
gear wheel was divided into three sectors. Different surface 
conditions were then applied to compare the expected results 
regarding bending and pitting (contact) fatigue strength in a 
case study (Fig. 2).

Sector 1 is the reference part, with standard flank grinding as 
the finish condition. The tooth root is unground, and the shot 

blasting intensity has been deliberately increased to show its 
influence. The amount of retained austenite is slightly above the 
standard to show an SP effect.

Sector 2 followed a standard SP process (S330H/0.45 
mmA/100% coverage) on the flank and root (Fig. 3).

Sector 3 follows a double SP process with modified intensity 
and coverage parameters. Afterward, a chemically accelerated 
superfinish process was applied to achieve an Rz flank value 
below 1 μm (Fig. 4).

Figure 2 In the case study, a gear was divided in three sectors, and each sector received a different surface finishing process.

Figure 3 Almen strip Sector 2.
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Roughness was measured in three sectors, according to ISO-
4288 (Ref. 6) over the three parts in the root and flank areas 
using three different profilometers (173 measurements).

To better understand the surface topography, an optical 
calibrated profiler based on confocal and interferometry tech-
niques was also used over gear replicas (Fig. 6). A good correla-
tion between both techniques was obtained, aligned with other 
reported experiences (Ref. 34). 

This optical technique is an easy way to contrast root rough-
ness measurements in areas and directions where standard pro-
filometers cannot reach.

Optical measurements (Figs. 7, 8) clearly show that SP effec-
tively changes topography and removes grinding marks, as 
observed in other papers (Ref. 31). The SF process in Sector 3 
creates an isotropic surface condition.Figure 4 Chemically accelerated process applied on Sector 3.

Figure 6 Gear replicas for optical roughness measurements.

Figure 5 Microscope 50X flank surface images comparison, Sectors 1–3.

Sector 1 (Standard) Sector 2 (SP) Sector 3 (IGS = SP + SF)
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Mean results are summarized in Figure 9 and compared to 
part drawing specifications.

The Sector 1 flank is aligned with specification, while the 
root is rougher than the standard due to an intense shot 
blasting process. 

Sector 2 is aligned with the SP expected flank influence, with 
an increase in Rz of 59% vs.  Sector 1. Root roughness is almost 
not modified compared to Sector 1 due to the previously men-
tioned intense blasting.

Sector 3 superfinish corrects and improves the prior SP pro-
cess, achieving Rz values at the flank surface less than 1 µm. SF 

reduces the peaks of this rough condition in Sector 3 root, but 
only in a limited way.

Residual stress measurements, retained austenite quantifica-
tion and hardness measurements were also performed over the 
three sectors. The results are summarized in Figure 10.

Retained austenite evaluation was performed according to 
ASTM E 975-13 (Ref. 7). The X-ray energy-dispersive diffrac-
tion method was used, with a continuous spectrum of the tung-
sten anode, linked to elaborated software that rebuilt the theo-
retical diffraction patterns of any mixture. This technique allows 
15 reflections of the ∝ phase (martensite) and 18 reflections of 

Figure 7 Gear flank roughness, Sectors 1–3.

Figure 8 Gear root roughness, Sectors 1–3.
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Figure 9 Roughness Ra and Rz results for Sectors.

Figure 10 Residual stresses (axial direction), retained austenite and hardness [HV1] over gear sectors in the flank region.

Figure 11 Micrograph comparison between Sector 1 and Sector 3 (same etching).

Sector 1 Sector 3
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the γ phase (austenite) in the energetic field of 12 keV to 40 keV 
for an angular value fixed at θ=18.25°. Material removal was 
done by chemical attack.

Residual stress analysis was carried out by X-ray diffraction 
following the EN 15305 standard test method (Ref. 8). Metal 
removal was performed by electrochemical polishing, and the 
depth was controlled by a profilometer.

A hardness Vickers profile was carried out according to NF 
EN ISO 6507-1 (Ref. 9) on a cross-section of the tooth flank.

The results are aligned with expectations based on previously 
referred investigations.

The residual stress in Sector 1 is based on the heat treatment 
process and is affected by gear flank grinding and the high per-
centage of retained austenite in this part.

Sector 2 SP results are aligned with AGMA 938 (Ref. 2) and 
Stenico (Ref. 21) results for 18CrNiMo7-6 material, both in 
maximum value and penetration.

The Sector 3 results show an improvement in the maximum 
value and penetration depth compared with Sector 2 because of 
applying a double SP process with higher intensity and coverage 
in the first phase process, followed by a fine particle second pro-
cess that increased the surface values.

Retained austenite is transformed into martensite due to SP in 
Sectors 2 and 3. The percentage of transformation is affected by 
SP intensity. A comparison of the micrographs of Sector 1 and 

Sector 3 (Fig. 11) clearly shows retained austenite transforma-
tion in Sector 3 near the surface due to SP.

Figure 12 shows bending and pitting fatigue safety margins of 
Sectors 1–3 compared to drawing specifications, calculated fol-
lowing ISO 6336 standard Method B (in blue).

An assessment of expected results is also done based on refer-
ences (“Empirical” in Fig. 12). 

According to ISO 6336, by applying IGS, an improvement of 
1.14 and 1.11 in bending and pitting safety, respectively, should 
be expected compared to standard conditions (root fillet blasted, 
not ground; tooth flank ground).

Based on experimental investigations, additional improvement 
should be expected above 1.2 for pitting and bending fatigue.

Bending fatigue improvement has a potential scatter condi-
tioned mainly on material cleanliness. Since wind power stan-
dards are quite exigent on this topic, a maximum value of 590 
N/mm2 for σF Lim is considered feasible (Ref. 38). Additional 
bending improvement has been referred to using an optimized 
SP process, but the size effect and subsurface high cycle failures 
are recommended to be conservative. A closer approach to a 
real bending safety margin increase seems only possible follow-
ing high cycle endurance tests on gears that are as close as pos-
sible to real size and cleanliness conditions.

Pitting improvement was calculated using Koenig et al. 
(Ref. 26) formulae to include the IGS effect.

Figure 12 Bending and pitting fatigue safety margins compared to standard.
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IGS benefits on micropitting, scuffing, wear and gearbox effi-
ciency are not calculated here but should be considered as an 
additional benefit of this process.

Conclusions
The increased demand for wind power transmissions and mass 
reduction to improve LCOE leads to gear designs close to their 
load-carrying capacity limits. A good option to increase gear 
torque density is SP followed by SF.

To date, the calculation methods according to ISO 6336 
Method B (Ref. 2) are based on investigations with convention-
ally ground gears and are mainly based on mn=5 mm studies. 
Gears with increased compressive residual stresses via SP and 
shallow surface roughness due to SF are not yet considered, or 
adequately considered, in the standard.

A case study for a wind gearbox planet wheel mn=20.5  mm 
is analyzed. The measured results are aligned with other 
experimental studies, and based on those references, potential 
increases of safety margins above 1.2 both for pitting and bend-
ing strength have been assessed.

The bending strength numbers of ISO 6336 are conserva-
tive but valid due to subsurface high cycle fatigue failures and 
should only be increased if experimental investigations preclude 
such subsurface failures.

High cycle fatigue testing of gear samples that are as close as 
possible to wind gear parts, following Method B (Ref. 1), would 
be needed to confirm and certify such predictions.

Other IGS benefits, such as micropitting, scuffing and wear 
risk reduction, and gearbox efficiency, should also be consid-
ered and confirmed by testing on gear parts as close as possible 
to wind gear modules.
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