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Introduction
The complete and accurate solution to the

contact problem of three-dimensional. gears has
been, for the past several decades, one of the
more sought. after. albeit elusive goals in the
engineering community. Even the arrival on the
scene in the mid-seventies of finite element
techniques failed to produce the solution to any
but (he most simple gear contact. problems.

The reasons for this are manifold. When gears
are brought into contact, the width of tile contact
zone is typically an order of magnitude smaller
than the other dimensions of the gears. This
gives rise to the need for a very highly refined
finite element mesh near the contact zone. But
given the fact that the contact zone moves over
the surface of the gear, one would need a very
highly refined mesh all over the contacting sur-
face, Finite element models refined to this extent
cannot be accommodated on even the largest of
today' scomputers. Compounding this difficulty
is the fact that the contact conditions are very
ensitive to the geometry of the contacting sur-

faces. Genera] purpose finite element models
cannot provide the required level of geometric
accuracy. Finally, the difficulties ofgenerating an

Fig. 1- Contact analysis of helical gears.

.Fig.2 -Contact analysis of hypoid gears.
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optimal three-dirnensional meshthat can accu-
rately model the stress gradients in the critical
regions, while minimizing the number of degree
of freedom of the model have kept the finite
eleraent method from being widely u ed to solve
the complete gear contact problem.

Research i11 the mid-and late ei ghtie showed
that the gear contact problem was not
unsurmountable, billt requiredan approach that
combined the trength of the finite element
method with those of other techniques, such as
the boundary element and surface integral meth-
ods. Concepts from mathematical programming
could be used to advantage in solving the contact
equations. An innovative approach to the formu-
lation of the finite elements themselves could go
a long way toward DIving the mesh generation
and geometric accuracy problem . With the idea
of incorporating the best of these and other tech-
noiogie in mind. we began development of what
inow CAPP (Contact Analy i:s Program Pack-
agejfour years ago. mt hasevolved intoa powerful
collection of computer programs that provide the

gear designer with. an insight into the state of Fig..4 _ Contact analysis of a 90° crossed axis external heUcal gear sel~
stre s in gears that has thus far never been po -
sible. Some of the features that CAPP supports
are friction, sub-surface stress calculation, stress
contours, Iran mission error, contact pressure
distributions, and. load distribution calculation.

Figs. I-Show examples of gear . ets for
which this process ha been succes fullyu ed.

Contact Analysis
In earlier studie of contact modeling (See

Ref . 1, 2, 11, 12)'.a pure finite element approach
was used to obtain compliance terms relating
traction at one location of a body to the normal
displacement at another location on the contact-
ing body. It. became apparent that in order to
obtain sufficient resolution in the contact. area,
the size of the finite element model. would have
to be inordinately large. A finite element mesh
that is locally refined around the contact region
cannot. be used when the contact zone travel
over the surfaces nfthe two bodie .

Other researchers working irlth.e tribology
area (Refs. 3, 7, 9) have obtained compliance
relationships in surface integral form by integrat-
ing the Greens function for a point load on the
urface ofa half pace (the Bou inesq elution)

over the areas of individual cells demarcated on
the contact zone. Thi method works well as long
a . the 'extent of the contacting bodie is much

F.ig.3 - Contact analysis 'of worm gears.

F.ig.5 - ContacSanaJysis of.a 90" eros ed axis external helical gear set.

larger than the dimensions of the contact zone,
and the contact zone is far enough from the other
surface boundaries so that the two contacting
bodies may be treated as elastic half spaces. These
conditions are, however, not atisfied by gears.

The approach that is described here is based
on the assumption that beyond a certain distance
from the contact zone, the finite element model
predicts deformations well The elastic half pace
model is accurate in predicting relative displace-
ments of point near the contact lone. Under the e
assumptions, it is possible to make prediction of
surface displacerneatsthatrneke u eofthe advan- lOr. D. R. Houser
tage of both the finite element method as well as is Professor of Mec/UllIi·

cui £nginet'rillg at Ohio
the surface integral approach. tate University and Ille

Thi method is related to asymptotic match- Director of lilt Gear D),·
,wmics and Gear Noise

ing methods that are commonJy used ·'0 solve Research Laboratory at
singular perturbation problems. Schwartz and tire u,tiversity.
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Fig, 6- Compulal.iollLal grid! in the contact zone of the gears ..
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Fig. 7 - The maCiChing interraoe.
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Fiig. 8 - T-hecontacting bodies and tbe computational grills,

Fig. 9'- Tbe subsurface grid qU'
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Harper (Ref. 8) have II ed uch an asymptotic
matching method to determine the relative ap-
proach of two rigid cylinders pressed against a.JI

ela. tic cylinder in plane strain.
In order to combine the surface integral elu-

lion with the finite element solution. a reference
or "matching" interface embedded in the contact-
i.mg body is used. This matching surface is far
enough removed from the principal point of con-
tact so that the finite element prediction of dis-
placements along this surface is accurate enough.
At the arne time. it is close enough to the princi-
pal point of contact so tlIat the effect of the finite
extent of the body does not significantly affect the
relative displacement of points on this surface
with respect to points in the region of contact.

Contact analysis is carried outin several tel' .
The first step is to layout a grid at each contact
zone. Them cross-compliance terms between the
various grid points are calculated using a combi-
nation ora surface integral form of the Bousinesq
and Cerruti solutions and the finite element
model of the contacting bodies. Fina]]y. load
distributicnsacd rigid body movements are cal-
culated using an algorithm based on the Simplex
method (Ref. IO.

In order to discretize the contact pressure
distribution that is applied on the surfaces of two
contacting gear teeth, a computational grid is set
up. Fig, 6 shows such a computational grid that
has been set up in the contact zone of the gears.
The entire face width of 'one of the gears (gear I),
which is mapped onto (~:1;E [-1, + In. is divided
into 2N + 1slices. N is a u er- selectable quantity,
The thickness of each slice in the ~. parameter
space is 61; = 21(2N + 1).Of each slice. j ::::·N
to + N. a cross sectlon of gear l is taken at the
middle of the slice, and a point is located On this
slice that approaches the surface of the mating
gear (gear 2) the clo e t. Tlli election is carried
out using the undefonned geometry. If the epa-
ration between the two gears at this closest point
is larger than a user-selectable separation toler-
ance, then the entire gear slice is eliminated from
further consideration. Otherwise, a set of grid
cells identified by the grid cell location indices (i,

j). i =-M to M, and the position vector liij i set up
centered around thi cIo est point ofsiice ]. The
number M is user-selectable. The dimension of
the grid oells in the profile direction As is also
user-selectable.

Let u(p;q) denote the displacement vector at



where q is some location in the interior of the
body sufficiently removed from the urface (Fig.

7). If the first two termsare evaluated using the
surface integral formulae, and the third term is
computed from the finite element model, then we
obtain the displacement estimate:

u(rij;r)('q) = (U(si),(l"ij;r) - u(si)(rij;'q) + u(fe)(rjj;q)

Th . term in parentheses is the deflection of r
with respect to the "reference point" q. Thi
relative component is better e timated by a local
deformation field based on the Bou inesq ami
Cerruti half-space solutions than by the finite
element model. The gross deformation of the
body due to the fact that:it is not a half space will
not significantly affect this term. On the con-
trary, the remaining term u(fe)(rij;q)' is not sig-
nificantly affected by local stresses at the sur-
face. This is becau e q i chosen to. be far enough
beneath the urface, This term is therefore be t

computed u ing a finite element model of the
body. The value u(rij:r)(q) thus computed will,
in general. depend on the location q because of
the different values of the surface integral and
finite element displacement fields there. The
location. is a o-called reference or "matching"
point. We would like to match the surface inte-
gral and finite element solutions not only at one
point. but also at a set of points belonging to a
"matching interface" (Fig. 7). We win then be
interested iII that value of u(rij;r), which will
minirnize the lea t squares deviation:
![u(rij;r) - u(si)(rij;r) - u(si}(rij;q) + u(fe)(rij;q)]~d\ Fig. 10 - The gridl subset. rll(k)j{k)'

the location q on a gear due to a unit normal
compressive force applied at the location p. which
is on the surface of the gear. The superscripts (s])
and (fe) on a term will meanthat the term has been

calculated using surface integral formulae and a
finite element model, respectively. Subscripts]
and 2 will denote gears number 1 and 2. respec-
tively. When the sub cript is omitted in an equa-
tion. the equation will be understood 10 apply to
both the gears.

Let u(p;q) = -u{p;,q)·o be the inward normal
component of the di 'placement vector u(p;q),

where n is the outward unit normal vector at the
point p.

Th di placement u(r ij;r) of'a field point r due
to a load at the surface grid point rij can be
expre . ed a :

u(rij;r) = (u(rij;r) - u(rij;q) ) + u(rij;q)

where q varies over tl1e reference surface r.
Another possibility, which lend it elf bener

to spatial discretization i to choose a value fOT

u(rij;r) which minimizes:

E[u(r..'r) - (u(si),(I""'I")_lI(sil(r ..'q) + u«(e)(r..·'I'»]2~r IJ':IJ' - 11' ·IJ'

where q varies over a grid of points qUI Laid out
overthe matching interface r (See Figs ..8-9), For
convenience. points in this grid'llj were chosen to
lie ha:lf at finite element thickne below corre-
sponding points in the urfaee grid I"y.... Let N
be the total number of points in the grid 'Iij ....

Then the value that minimizes the least quare
deviation above is:

In order to obtain sufficient resolution of the
contact: tresses. the number of points in the grid
I"Ij will have to be very large. typically in the
hundreds. Computation of all the terms ofthe type
u(fe)(rjj;qap) would involve hundreds of back-
substitutions through. the decomposed finite ele-
ment stiffness matrix, Thi would be prohibi-
tively time-consuming because of the complexity
of the three-dimensional finite element model of
the body. Furthermore, the finite element model
does not u ually have an adequate degree of
freedom at the surface to allow all the terms
u(fe)(rij;qaji) to be independent of each other.
Thus ,evaluating each such term by a separate
back-substitation is probably al 0 superfluous,

A better method i to obtain u(fe)
(ri(k)j(k);qi(i)j(l) for a much smaller subset
Il"i(k)j(k); k = 1,2, ... ,M} of the grid {rljl}. as
shown in Fig, 10, and the corresponding subset
(qi(k)j(k): k = 1,2•... ,M} ofthe grid (qiji}' If the

k (i(kl. j(k»

surface edge I (-2. )

2 (-2, -2)
3 (-2.-'0)
4 CO. -4}
5 (0. -n
6 (0.2)
7 (2. )
8 (2.0)
9 (2.4)
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Fig. I J - The finiCeelemem mode~ Dfa pair .of contacting teeth frDm a 9{),o
crossed helical gear set.

Fig ..ll- The c'omputatiDnal grid b tween a pai r of contacting .ceth from
a 9{)D crossed helical gear set.

Fig. 13 - The eontaet pressure ,disl:ributiDnbetween the contacting pall' of
era ed heli.ealgear teeth.
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Fig. 14 - Variation of subsuefuce shear stress wUlt depth under the point
of maximum contact pressure,

Fig. 15 - A tbllee-IDotb lioUe element model of the gear showing. the
aetlve surfaces,
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number of points M in this restricted set of grid
points is small, (hen all the 'term
u(fe)(ri(k)j(k) 'qj (l)j(f)) can be computed 1Ising.on Iy
a small Dumber M of back-substirations,

In the numerical examples to follow, M was
either 9 Of 3,.The values of u(fe)(rij;q~~} for the
complete set of grid points can be obtained by
u ing two-dimen ional iaterpolants el up on
the surface grid r:ij and the subsurface grid qijl

by the interpolation method:

u,(fe)(rjj;'IajV

=u?+ Mu(fe)(ri(k)J(k);qi.U)j(l)N,(o"'~)Nk (i.j)

Where the function NkOj) are biquadratic func-
tions of iand j:

... p wOo I, Z

The coefficients aka~ are chosen such that

where ~ is the Kronecker delta.
The finite element formulanon that was used

to evaluate the terms uffe1(ri(k)J(k);qj({lj(l) has
been discussed in considerable detail in earlier
papers (Refs.. 10 12).

The method de cribed above i u ed to calcu-
late all the terms ur(rlij;rlld) and u2(r2ij;r2kl) to
build a compliance matrix. The contact force
distribution over the grid and rigid body motions
are determined by setting up the contact equations
using this compliance matrix. and solving these
contact equation by any of the numerou meth-
ods available in the literature. In the numerical
examples described below, amethod ba ed on the
Simplex algorithm of linear programming was
used, Readers are referred 'to Reference 11 for
more details.

Numericall ExampJes
The following examples have been chosen to

iHustratea few of the features ofCAPP.
Crossed Axis Helical Gear Set. The first ex-

ample shown in thi ankle i (hat of a pair of
identical helical gears whose axes are at right
angles and who e operating helix angle is 45°.
This makes an interesting example because the
location and orientation of the contact zone can be
easily predicted by simple calculations and by
uing the symmetry of the situation, Figs, l 1-1.2
show a pair of contacting teeth of the 90° eros ed



helical gear set. Fig .. 11 shows the finite element
meshes of the two teeth, and Fig. 12 shows II

contact grid that. has been set up in the contact
zone ..The diametral pitch of this gear set is 10.
Fig. 13 shows the contact pre me distribution
between the teeth as calculated by CAPPo Fig.]4
shows the variation of ubsurface Von Mises'
shear stress as a function of depth below the point
of maximum contact pre sure.

Hypoid Gear Set. The next case chosen here is Fig. 16 - The locusoi' the contact loneata gear torque of 240 tln·tbs.

that of contacting hypoid gears, The cutting ma-
chines used to manufacture these gears have
many kinematic settings. The settings are chosen
such that the contact zone remains in the center of
the tooth surfaces as the gears fQII against each
other. A heuristic procedure is available to select
the settings, but in practice these setting have to be
selected after a tedious iterative process involv-
ing cutting and testing actual gears. Even so, itis
very difficult. to predictthe actual contact stresses,
fatigue life. kinematic errors. and other design
criteria, especially when not installed in ideal
condidons. The contact stresses are so sensiti ve to
the actual. surface profile that conventional 3-D
contact analysis :isnot feasible,

A sample 900 hypoid gear set from the rear
axle of a commercia] vehicle was selected ..The
gear ratio of this set was 41: l 1.and the axial offset
was 1.5 inches. The gear. urfaces had been ex-

perirnentally shown to be ideal for this particular Fig. 18- The loeus of tile contact. zone at a gear tOl'que .of '960 tln.lbs.
gear ratio and axial offset. In other words, the
contact zone was feund to remain in the central
portion of the gear teeth in. the operational torque
range. The object of this numerical study is to
verify this by looking at the manner in which the
contact pattern shifts when the gears are moved
around from their ideal locations.

The model was constructed by first generat-
ing values of coordinate normal. vectors for points
on the surface by simulating the gear cumng
machines. The finite element description of the
surface was then created by fitting tenth-order
truncated Chebyshev series approximations to
tills data. The interior portions ofthe finite ele-
ment were created semi-automatically. Only a
sector containing three teeth of each gear was
modeled, with each tooth being identical. The
gear (gear I) and the pinion (gear 2. the smaller
gear) were then oriented in space as per the
assembly drawings. and the analysis was carried
out for each individual time step. Fig. 2 shows

Fig. 17 - Theleeus of the contact. zone at a gear tor,que ,of·4·80in-Ibs.

Fig. 19' - Contact pressur~ eontoues for Position 1.

the six-tooth gear and pinion model. Sectoral Fig ...20 - Contact pressure contours for Position] magnified.
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Fig. 21 - Contact pressurecontours forPositlen 2.

Fig, 22 - Contact pressure ,contoursfoJ' Position l m gnified.

~r
I

~.

F.ig. 238.- The effece ,ofan X translation on the 'cmtlact pattern.
F.ig.13b - The effed of a Y transl.ation on the contact paUern.
Fig. 23c - The effed of a..z fran la.tion on the eontaet ;patt,em.
Fig. 2Jd - The effect of an X rota.tion on the eontaet pattern.
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symmetry is used to generate stiffness matrices
from the stiffness matrilt of one tooth. For thi
particular gear set, a three-loath. model suffices
because at the most two teeth contact at a time.
Fig. 15 shows the surfaces of the three-tooth
gear. Fig . ]6- ]8 how the contact p.attern (which
is the locus of the contact zone as [be gears ron
against each other), fora gear torque 01240, 480,
and 960 in-lbs, respectively. Figs. 19 and 21
show views of the contact zone with contact
pressure contours on the gear for two particular
angular po ition . Fig . 2,0 and 22 show magni-
fied views of the contact zone for the e two
positions. They show contours of normal. con-
tact pressures on the surface . Computational
grids of 11 x 25 cells were used on the e surfaces
to obtain the pressure distributions. Finally, the
position of the pinion wa perturbed lightly from
the design location and Figs. 23a-d how the
contact patterns that were obtained. When com-
pared to the contact pattern for the unperturbed
po idon in Fig. 16, it shows that the best contact
pattern does indeed occur at the designed posi-
tion.Iending er _dence to the notion that an analy-
sis of the kind described in this article has the
potential to be u ed in the de ign proce itself.

Examples ojOtherPOSf-Processillg Features.
A variety of post-processing options are available
for the display of the .1a:I.eof· tress in contacting
gears. Fig. 24 shows contour curves of maximum
principal normal stres calculated at various sec-
tions in a pair of contacting bel ical gear teeth. Fig.
25 shows contour curves of maximum principal
normal stress drawn along the surface of the gear
tooth. and Fig. 26 shows a contour urfaoe of
maximum principal normal stress within a gear
tooth. It is also possible to draw contour curves
and surfaces for the minimum principalnormal
stress, and the Von Mi es' octahedral. shear
stress ..Fig. 27 is an example of an arrow diagram
that can be used to show boththe magnitude as
well as direction of the principal normal stresses.
Stressesare depicted by arrows pointing in the
principal directions. Tensile stresses are depicted
by outwardpointing arrows, and compressive
siresses are depicted by inward pointing arrow.
The length. of an arrow is proportional. to the
magnitude of the principal stress.

!Conclusions
Using a combination of finite element and

surface integral methods seems to be, in the
authors' opinion, the most practical method of



modelling stiffness behavior of contacting bod-
ies. When this method is used along with an
efficient algorithm for solving contacrequations,
one can predict contact stress distributions and
deformations in more realistic detail than other-
wise possible .. Results obtained from a contact
analysis program (CAPP) based on this method-
ology have been found to compare wen with
calculations based! on other methods ..•
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Fig. 24 - Contour curves of maximumpriaclpal normal. stress drawn
within sections 0 -a contacting pair of helical gear teeth.

Fig. 25 - Contour curves of maximum principal stress drawn. along the
surl'ace of a tooth.ofa crossed helical gear set.

Fig ..26 - A contour surface of maximum principa:J normal stress within B.
tooth ora. helleal gear set.

Fig. 27 - A stress arrow diagram ..
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