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Nomenclature

Variables

a — gear addendum (mm, in) and bearing life adjustment factor

C — dynamic capacity (kN, 1bs)

E — elastic modulus (MPa, psi)

f — face width (mm, in)

F — load (kN, lbs)

Kf — stress concentration factor

I — life (106 cycles and hours)

n — gear ratio relative to the arm, number of planets
n, — actual transmission gear ratio

N — number of gear teeth

P ; — diametral pitch (1.0/inch)

R — gear radius (mm, in) and reliability
Y — Lewis Form Factor

& — pressure angle (degrees, radians)

v — Poisson’s Ratio

p — radius of curvature (mm, in)

¢ — bending stress (Pa, psi)

0, — Hertzian contact stress (Pa, psi)

® — angular velocity, speed (rpm)

,, — bearing load cycle speed (rpm)

X — central angle between two adjacent planet center lines

with the input shaft center (radians)

Subscripts Superscripts

av — mean

d — dynamic

o — output

pl — planet

r —ring gear
s — sun gear
1 — pinion

2 — gear

10 — 90% reliability

b — Weibull slope exponent
p — load-life exponent
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Abstract

Planetary gear transmissions are compact,
high-power speed reducers that use parallel load
paths. The range of possible reduction ratios is
bounded from below and above by limits on the
relative size of the planet gears. For a single-
plane transmission, the planet gear has no size at
a ratio of two. As the ratio increases, so does the
size of the planets relative to the size of the sun
and ring. Which ratio is best for a planetary
reduction can be resolved by studying a series of
optimal designs. In this series, each design is
obtained by maximizing the service life for a
planetary transmission with a fixed size, gear
ratio, input speed, power and materials. The plan-
etary gear reduction service life is modeled as a
function of the two-parameter Weibull distributed
service lives of the bearings and gears in the
reduction. Planet bearing life strongly influences
the optimal reduction lives, which point to an
optimal planetary reduction ratio in the neighbor-
hood of four to five.

Introduction

Planetary gear transmissions offer the user a
moderate gear reduction with a high power densi-
ty. By carrying multiple planet gears on a rotating
arm, load sharing is enabled among the planets.
The symmetrical placement of the planets about
the input sun gear provides radial load cancella-
tion on the bearings that support the input sun and
the output arm (Refs. 4 & 6). The fixed internal
ring gear support also has no net radial load. With
near-equal load sharing in medium-to-fine pitch
gearing, a compact reduction results. Planetary
reductions are often found in transportation
power transmissions due to this weight and volu-
metric efficiency (Refs. 4 & 8).

Much of the published design literature for
planetary gearing focuses on the kinematic pro-
portioning of the unit to achieve one or more
reductions through the use of clutches and brakes
(Refs. 7 & 18).




Recent literature on planetary gears has
focused on the dynamic loads in the transmission
with measurements of load sharing and load vari-
ations in specific units (Refs. 3, 5, 8 & 10).
Monitoring the dynamic loads in a planetary
transmission has also been proposed as one
method of determining the need for preventive
maintenance in the transmission (Ref. 2).

While the reduction of dynamic loads in a
planetary transmission is an important task, these
studies do not indicate which ratio is best suited
for a planetary transmission. Studies of rotating
power in planetary transmissions have indicated
that as the ratio is increased, the percent of rotat-
ing power in the unit decreases (Ref. 6). This sug-
gests that the best ratio for a planetary reduction
is the highest possible, which is reached with the
largest planet gears. Addendum interference
between the planets determines this limit.
However, when one considers the size of a plane-
tary reduction required to transmit a given power
level at a given input speed, the loading on the
gears and bearings in the reduction become an
important factor, as do the component lives under
load (Refs. 11 & 15).

Since aircraft and automotive transmissions
can see service in excess of their nominal design
lives, periodic maintenance is provided through-
out their lives (Refs. 2 & 12). The service life of
a transmission between maintenances is a design
variable that one would like to maximize for a
given size and power.

Programs have been written to optimize trans-
missions for service life (Refs. 9, 13 & 14). The
service life of the transmission is modeled as a
function of the service lives of the components that
have a two-parameter Weibull distribution. The
critical components for this calculation are the
bearings and the gears in the transmission. A mean
life of the transmission is determined from the
mean lives of the critical components under load.

In this article, the influence of speed reduction
magnitude on the service life of a planetary gear
reduction is investigated for reductions with sim-
ilar components. An optimal gear reduction for a
planetary gear set is sought considering the size
and capacities of the components. For a fixed
power level and transmission size, the life is
charted versus the reduction ratios for a fixed
input speed and three, four and five planets.

Planetary Constraints

In comparing the lives of similar transmis-
sions, one needs to specify the conditions of
similarity. The planetary gear reductions consid-
ered in this work are single-plane reductions
with input sun gears, fixed ring gears and multi-
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Fig. 1 — Single-plane planetary transmission.

ple planet gears. The planet gears are placed
symmetrically about the concentric input and
output shafts as shown in Fig. 1. Each planet of
a reduction is connected to the output arm
through a single ball bearing at its center. Since
the input sun gear and fixed ring gear mesh with
all the planet gears, a single diametral pitch or
module is used for all gears in a reduction, as is
a single face width.

No bearings are included on the input or out-
put shaft since the internal loads in the planetary
transmission are balanced on these shafts due to
the symmetric placement of the planets. Bearings
are needed on these shafts, but their placement
and loading are based on external considerations.

All transmissions carry the same power and
have the same outside diameter, which provides a
radial ring thickness outside the ring gear teeth of
1.5 times the tooth height.

In this comparison, the input speed and torque
are fixed as the ratio is varied. For each design,
the planetary system life is maximized subject to
the above constraints in addition to constraints on
the stresses in the gear teeth and on assembly
clearances. The parameters that define each
design are the number of teeth on the sun gear, N,
the face width of the gears, f, and the diametral
pitch of the gears, P.

Kinematics

In a planetary gear train, the planetary gear
ratio is the ratio of the speeds of the input and
output shafts. To determine this ratio, one first
needs to calculate the gear ratio of each gear
mesh in terms of the number of teeth on each
gear. The gear ratio of the sun gear mesh with
the arm fixed is

N

pl
frivg (1

]

n =-

and the gear ratio of the ring gear mesh with the
arm fixed is

';2:._—..L_
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(2)
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where the overall transmission gear ratio relative
to the arm is
n=n*n, 3)
and the speed of the output arm relative to the
fixed ring is
®

= 2 4
o, a-m (4)

So the planetary gear ratio is

n,=1-n (5)
And the speed of each planet gear is
n-n & 4 1—"2\ ©)
o m 3
g n, (1-n) R o

The planet bearing load cycle speed is the speed
of the planet with respect to the arm:

Wy = @ ("+"1) (N

For each transmission studied, the planetary
gear ratio, n , is fixed, and the number of teeth on
the sun gear is an independent design parameter.
Values that maximize the service life for a given
transmission size are found for the number of
teeth on the sun gear, the gear face width and the
diametral pitch. This requires the number of teeth
on the ring gear, N, and on each planet gear, Npl,
to be found in terms of n, and N_.

The number of teeth on the ring gear is related
to the number of teeth on the sun by the gear ratio
relative to the arm, since the planets become
idlers in this inversion.

N,=-nN;=(n,- 1) N, (8)
Since the diameter of the ring gear is equal to the
diameter of the sun gear plus twice the diameter
of the planet gear, the number of teeth on each
planet gear can be calculated by

(n,~1-I)N, (n,—2)N
Pl U 2 ety

To keep the number of planet teeth positive, the
transmission gear ratio, n, must have a value
greater than 2. At 2, the planet gears have no size,
and the planetary reduction ceases to exist.

To prevent interference among gear teeth of
adjacent planet gears, sufficient circumferential

S ——— ————— T —————— — {— — - {——— {— — _— —— — T ——— —— —— — — — ¢ - — — S S— — — T W S — — S S — — — —— - — -

clearance must be provided. Requiring that the
distance between the axes of two adjacent planets
be greater than the outside diameter of the planet
gear by twice the tooth addendum will accom-
plish this:

2-(RS+RP,)-sin(%)>2-(Rp,+2-a) (10)

where X is the central angle between two adjacent
planet center lines and a is the addendum of the
planet gears.

One additional constraint is needed to allow
the planets to be positioned symmetrically around
the sun gear. The sum of the number of teeth on
the sun and on the ring divided by the number of
planets must produce an integer.

N+ N,
—_— =1 (11)
"_Df
Tooth Strength

The AGMA model for gear tooth bending uses
the Lewis form factor and a stress concentration
factor to determine the stress in the tooth for a
load at the highest point of single tooth contact
(Ref. 1). The bending stress model is

U F yP &K f

]
where F is the tangential dynamic load on the
tooth, K is the stress concentration factor and Y is
the Lewis form factor based on the geometry of
the tooth. Since the Lewis form factor is a func-
tion of the tooth shape, it is dependent on the
number of teeth on the gear, as is the stress con-
centration factor.

Large localized stresses occur in the fillets of
gear teeth due to the change in the cross section
of the tooth. Although the maximum stress is
located closer to the root circle than predicted by
Lewis’ parabola, the distance between the two
locations of maximum stress is relatively small,
and the stress concentration factor accurately
compares the maximum stress in the tooth to the
Lewis stress (Ref. 1). This method of rapid calcu-
lation of bending stress for external gear teeth is
extended to include the bending stress in the

(12)

¢ internal gear teeth of the ring gear (Ref. 17).
8
9 ;

In addition to bending stresses, surface contact
stresses can contribute to gear tooth failure. The
Hertzian pressure model closely predicts these
contact pressures:

1 il
_
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d

T = N2 (13)
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where ¢ is the normal pressure angle of the gear
mesh, p, and p, are the radii of curvature of the
pinion and gear tooth surface at the point of con-
tact, v, and Vv, are the Poisson ratios and E, and
E, are the moduli of the material elasticity for the
two gears.

Contact pressure near the pitch point leads to
gear tooth pitting, which limits the life of the
gear tooth. Gear tip scoring is another type of
failure that is affected by the contact pressure at
the gear tooth tip. One model for gear tip scoring
includes the pressure times velocity factor, where
the sliding velocity at the gear tip is tangent to
the tooth surfaces.

Service Life

Surface pitting due to fatigue is the basis for
the life model for the bearings, gears and trans-
mission. Fatigue due to this mode of failure has
no endurance limit, but has a service life
described by a straight line on the log stress ver-
sus log cycle S-N curve. This life-to-load rela-
tionship can be written for a specific load, F, at
which the 90% reliability life is /,, and which is
related to the component dynamic capacity, C, as:

€y (14)
F

Ly=al

Here the component dynamic capacity, C, is
defined as the load that produces a life of one mil-
lion cycles with a reliability of 90%, and a is the
life adjustment factor. The power, p, is the load-life
exponent, which is determined experimentally.

Complementing this load-life relationship is
the two-parameter Weibull distribution for the
scatter in life. In this distribution, the reliability,
R, is related to the life, /, as:

(15)
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A meaningful estimation of service time is the
mean time between overhauls. The mean life for
a two-parameter Weibull distribution can be
expressed in terms of the gamma function, T, as:

1
llO. ]06' r(l + T)

(16)

1
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including the conversion from million cycles to
hours, where ®, is the output speed in rpm.

If the repairs are component repairs, rather
than full replacements, then the mean life
between overhauls is based directly on the mean
lives of the individual components. In this case,
the transmission repair rate, which is the recipro-
cal of the mean life, is the sum of the individual

Table 1 — Planetary Design Inequality Constraints

Constraint Value Unit Type
Bending stress: sun-planet 40.,000.000 psi upper
Full load Hertz stress: sun-planet 180,000.000 psi upper
Gear tip Hertz pressure: sun-planet 180,000.000 psi upper
PV factor of sun-planet teeth 50.000 10° psi-ft/min upper
Flash temp of sun-planet teeth 200.000 deg. F upper
Sun involute interference 0.001 radians lower
Sun face width to diameter 0.750 ratio upper
Bending stress: planet-ring 40,000.000 psi upper
Full load Hertz stress: planet-ring 180,000.000 psi upper
Gear tip Hertz pressure: planet-ring 180,000,000 psi upper
PV factor of planet-ring teeth 50.000 10° psi-fi/min upper
Flash temp of planet-ring teeth 200.000 deg. F upper
Involute interference: planet-ring 0.001 radians lower
Planet circumference clearance 0.100 in lower
Bearing diameter 0.400 in lower
Diameter of ring gear 12.000 in upper
Volume of transmission 1.000.000 in? upper

component repair rates. Thus, the transmission
mean service life is estimated as the reciprocal of
the repair rate:

l. . =

avs 1

z

amn

avii
Planetary Designs

In considering the effects of the gear ratio on
the mean transmission life, the input speed and
power were held constant. The input speed was
2,000 rpm for all transmissions, which carried a
power of 51 hp with a fixed input torque of 1,600
Ib-in. Each transmission has a maximum ring
gear outside diameter of 12". The sun gear mesh
and the ring gear mesh both had a normal pres-
sure angle of 20° and the same diametral pitch.
All gears were made of high strength steel with a
surface material strength of 220 ksi. The Hertzian
contact pressure was limited to less than 180 psi,
and the tooth bending stresses were limited to less
than 40 ksi. These limits include a total load
design factor of 1.5 to adjust the nominal stress
calculations of Eqs. 12 and 13 to code levels. The
PV factor was limited to less than 50 million psi-
ft/min, and the gear tooth flash temperature was
limited to less than 200°F. The Weibull slope of
the sun gear, the three planet gears and the ring
gear was 2.5. The load-life factor of all five gears
was 8.93. The planet bearings were 300 series,
single-row ball bearings, with a Weibull slope of
1.1, a load-life factor of 3.0 and a life adjustment
factor of 6.
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Planet Ratio Tooth Face | Pitch Life Pitch Life
Numbers Width
n, N, Npi N, f P, L. Py L.
in in’! hrs in’! hrs
3 3.0 60 30 120 1.0 11 1040 | 10.68 | 1320
335 48 36 120 1.0 11 2430 10.7 3000
40 45 45 135 | B 12 4720 | 11.95 | 4870
45 40 50 140 1.5 13 3880 | 124 | 5500
50 36 54 144 1.5 13 4940 12.7 5870
55 36 63 162 15 15 4300 | 142 | 6230
6.0 30 60 150 1.5 14 3600 13.2 5590
6.5 24 54 132 1.5 12 3740 | 11.68 | 4560
7.0 24 60 144 1.5 13 3870 12.7 4600
TS5 24 66 156 35 14 3900 13.7 4580
8.0 24 72 168 15 15 3810 14.7 4450
4 3.0 60 30 120 1.0 11 1850 | 10.68 | 2340
5.3 40 30 100 1.0 10 1640 9.02 | 3680
4.0 40 40 120 1.25 11 5880 10.7 7240
4.5 40 50 140 15 13 6900 | 12.35 | 10100
5.0 36 54 144 | £ ¢ 13 8780 | 12.68 | 10560
5 3.0 60 30 120 1.0 11 2890 | 10.68 | 3660
39 40 30 100 1.0 10 2570 | 9.05 | 5600
4.0 40 40 120 125 11 9180 11.7 | 11300

Fig. 2 — Planetary trans-
mission with a reduction
ratio of 3.0

Fig. 3 — Planetary trans-
mission with a reduction
ratio of 5.0

Fig. 4 — Planetary trans-
mission with a reduction
ratio of 7.0
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Table IT lists the obtained designs with the
numbers of teeth on the sun, planet and ring
gears, the gear face width and the diametral pitch
for each ratio. These teeth numbers are discrete
values that produce the required planetary ratio
and allow symmetric placement of the planets for
radial load cancellation. After the diametral pitch,
the mean service life of the transmission is listed
for component replacement at repair. This life
corresponds to the integer diametral pitch listed
before it. It also corresponds to a somewhat
smaller transmission as dictated by the integer
pitch. The last two columns show larger lives,
which vary more continuously, and the fractional

diametral pitch required to obtain these lives by
allowing the transmission to have the full 12" out-
side ring diameter. The table includes blocks of
data for three-, four- and five-planet designs.

Even higher lives would be possible with fine
pitch gearing, since the outside diameter limit
includes the ring gear dedendum and the rim
height outside the ring gear pitch diameter. Both
distances are proportional to the tooth height.
However, the diametral pitch is limited to 16 or
less to maintain overload tooth bending strength.

The results show that as the gear ratio was
increased, the size of the sun gear decreased, and
the size of the planet gears increases. Figs. 2-4
show planetary transmission designs for speed
reduction ratios of three, five and seven.

The effect of the gear ratio on the mean life of
the transmission is plotted in Fig. 5. For the inte-
ger diametral pitch designs with three planets, the
mean service life, plotted as a series of crosses,
increased from 1,040 hours for a gear ratio of
three to 4,940 hours for a gear ratio of five, and
then decreased to 3,600 hours for a gear ratio of
six, with a final life of 3,810 hours for a gear ratio
of eight. Higher lives that varied more continu-

+ ously were available with uneven pitches and are
1 plotted as a life limit line above the found design

lives. This line corresponds to the primed pitches
and lives of Table II and is also jagged due to the
discrete nature of the numbers of teeth.

Similar data are plotted with circles for integer
pitch designs with four planets and with squares
for designs with five planets. For the four-planet
designs, the integer pitch design lives ranged
from 1,850 hours for a gear ratio of three to a
maximum of 8,780 hours for a gear ratio of five.
And for the five-planet designs, the mean service
lives varied from 2,890 hours for a gear ratio of
three to 9,180 hours for a gear ratio of four.
Similar life limit designs are plotted above these
points for designs with the full 12" outside diam-
eter and non-integer diametral pitches.

At low planetary ratios, the planet and planet
bearing sizes were small. At a ratio of three, the
smallest bearings for the optimal designs were
selected, causing the low life designs for each
number of planets. As the planetary ratio was
increased, the size of the planets and the planet
bearings increased, which increased the life of the
transmissions. With more planets to share the
load, the four- and five-planet designs had greater
lives than the three-planet designs. However, cir-
cumferential planet interference limited the five-
planet designs to a maximum ratio of four and the
four-planet designs to a maximum ratio of five.
At ratios above 5.5, the life of the three-planet




designs dropped due to the increase in the output
torque. Once again, the lower transmission life
was attributable to lower planet bearing life. At a
gear ratio of eight, the pitch diameter of the sun
gear had decreased to 1.6" with a face width of
1.5". Larger ratios would have decreased this
length-to-diameter ratio even further and would
have increased the bending stress in the sun gear
teeth above the 21 ksi present in the eight-to-one
gear ratio design. So the table and graph were cut
off at this gear ratio even though designs are pos-
sible at higher ratios with three planets.
Conclusions

The effect of the gear ratio on the life of the
transmission was examined. Of interest is the
possibility of an optimal planetary gear reduction
from a life standpoint. In this study the overall
size of the transmission was held constant, its
strengths were maintained and the ratio was var-
ied for the three-, four- and five-planet arrange-
ments. Each optimal design was defined by the
number of teeth on the sun gear, the gear face
width and the diametral pitch of the gears. For the
comparison, the transmission input speed and
power were held constant. The results show that
as the gear ratio increased, the size of the sun gear
decreased, and the size of the planet gears
increased. At a ratio of three, the planet bearings
were reduced in size relative to the transmission
sufficiently to limit the transmission life. Five-
planet designs had a maximum ratio of four with
no planet interference, and four-planet designs
could be obtained with ratios up to five. Above
five and a half, the lives of the three planet
designs fell off due to the higher output torques.
The optimal design exists for a transmission with
a gear ratio of approximately four to five. {
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