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Management Summary
In recent years gear noise in automobiles has attracted more and more scrutiny. This is due in part to reduced interior 

noise levels, which make drivetrain noise more noticeable; thus the gear industry’s development and quality assurance 
focus is on the excitation of gear sets. To ensure a constant noise quality objective, characteristics are needed to describe 
the noise quality of gears and gearboxes. In acoustics it is well known that sound power level and FFT (Ed.’s note: 
Fast Fourier Transform—an efficient algorithm to compute the Discrete Fourier Transform—DFT—and its inverse) 
analysis are not sufficient to fully describe the sound quality of noise. It is for that reason that with psychoacoustics, 
additional values have been developed such as tonality, roughness and sharpness to better describe the sensation of 
human hearing.

Our objective is to provide an overview of the benefits of using psychoacoustic characteristics for describing gear 
noise. And with that, human hearing and the most important psychoacoustic values will be introduced. Finally, results 
of noise tests with different gear sets will be presented. The tests are the basis for a correlation analysis between psy-
choacoustic values and gear characteristics. The conclusion will provide an outlook on further investigations.

Introduction
In the gear development process, noise reduction has al-

ways been important. Interior noise is a quality characteristic 
and influences customer satisfaction (Ref. 1). And while in 
recent years interior noise has been steadily quieted (Ref. 2; 
Fig. 1), interior noise reduction in fact further exposes gear 
noise as one of the dominant noise sources in vehicles.

To attain customer satisfaction, it is not enough to reduce 
the noise level of the drive train; in future the sound design of 
gearboxes will become necessary. But to date, no characteris-
tics exist with which to evaluate transmission noise.

Within this report psychoacoustic characteristics are used to  
describe gear noise. A case study was conducted to investigate the 
correlation between gear noise characteristics and gear geometry.

Benefit of 
Psychoacoustic 

Analyzing Methods 
for Gear Noise 
Investigation

C. Brecher, C. Gorgels, C. Carl and M. Brumm

(This VDI paper was first presented at the 2010 International Conference on Gears, Düsseldorf.)

Psychoacoustics
In gear development and gear production the quality-

check of transmissions is based on physical values—unlike 
the customer who evaluates the sound quality with his hear-
ing. Due to a difference in the performance of human hearing 
and noise analysis, evaluation of the same noise can differ. 
Psychoacoustics is one solution for this problem. In psycho-
acoustics, objective values such as sound level, frequency, 
bandwidth, duration and degree of modulation are used to 
calculate psychoacoustic characteristics (Ref. 3). These char-
acteristics have a linear correlation to human noise perception 
and are based on extensive testing.

The anatomy of human hearing influences noise percep-
continued
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tion. For example, the length of the outer ear canal leads to 
an amplification of frequencies between 2 and 4 kHz. Due 
to Eigen frequencies the transfer function of the inner ear 
is optimal for frequencies with a range of one-to-two kHz. 
The sensation area for human hearing is shown in Figure 2; 
it reaches from 16 Hz to 16 kHz, and the agility of human 
hearing enables sensate sound pressure from 2·10–5 Pa to 100 
Pa. Sound pressure is usually expressed with a leveled scale; 
the reference value is 2·10–5 Pa. The sensation area displays 
the isophones (curves of constant loudness) (Ref. 4). The psy-
choacoustic loudness with its unit sone (a unit of subjective 
loudness) allows comparison of the loudness level of noise 
with different frequencies.

Further psychoacoustic characteristics are sharpness, to-
nality, roughness and fluctuation strength (Fig. 3; Ref. 3). The 
definition of the scale for the different characteristics takes 
into account that a doubling of the sensation leads to a dou-
bling of the value.

Design of Experiments
The aim of this report is the investigation of psychoacous-

tics to evaluate gear noise. Therefore different gear sets with 
different geometry will be tested in a gear set fixture (Fig. 4; Ref. 
5). The fixture is equipped with angle encoders. Additionally, 
acceleration sensors are mounted close to the bearings and a 
free-field microphone is located close to the tooth mesh. The 
fixture enables exchange of the gear set without disassembling 
the fixture.

To investigate the correlation between gear geometry and 
gear noise, four different gear sets are tested (Fig. 5). The 
macro-geometry remains the same for all variants—the pin-
ion has 25 and the gear 36 teeth; the center distance is 112.5 
mm and the modulus is 3.5 mm (Ref. 5).

The topology of the first gear set—V1—is conjugated and 
V1 is the reference for the other variants. V2 has a pitch error 
that is harmonic to the gear revolution and a wavelength of 
one-sixth of a gear revolution; V3 has tip relief and crowning; 

Figure 1—Motivation for psychoacoustics in gear industry (Ref. 2).

Figure 2—Loudness is a psychoacoustic characteristic. 
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V4 has only tip relief.
Use of Psychoacoustics for Gear Noise Investigations
What follows is a presentation of the influence of input 

speed and gear geometry on gear noise. The speed influence 
was tested by speed sweeps and therefore the input speed was 
increased from 200 to 3,200 rpm. During one speed ramp, the 
load was kept constant. Figure 6 shows the influence of the 
input speed on the gear noise characteristics.

The Campbell graph (Fig. 6) in the upper left corner 
shows the rising frequencies of tooth mesh harmonics over 
speed; it also shows the increasing magnitudes of gear noise 
over speed. The rising sound power level over speed leads 
to a spike in loudness; the sharpness of the gear noise is also 
increasing over speed due to the rising mesh harmonics. The 
lower-right graph (Fig. 6) shows that the tonality of the gear 
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noise is almost independent of speed.
The influence of gear geometry on noise characteristics is 

seen in Figure 7. Comparison of the noise of the four different 
gear designs (Fig. 5) is based on the order spectra (sound and 
vibration) of structure-borne noise and airborne noise. The 
noise of V1 is characterized by relatively small magnitudes 
of the mesh harmonics (36th, 72nd). The tip relief of V4 leads 
to an increase of the magnitudes of the mesh harmonics. The 
noise signals of V3 show the highest magnitudes of the mesh 
harmonics. The pitch error of V2 leads to many harmonics of 
the 6th order referred to gear revolution. This is caused by the 
wavelength of the pitch error; it has a wavelength of one-sixth 
of a gear revolution.

The comparison between the order spectra of impact 

Figure 3—Overview of some psychoacoustic characteristics (Ref. 3).

Figure 4—Test set-up.
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noise and airborne noise shows that the characteristics of 
both sounds are similar. Dominant frequencies occur in the 
structure-borne noise signal and in the airborne noise signal—
leading to the question of whether psychoacoustic calcula-
tions can also be used for structure-borne noise.

Figure 8 shows an overview for the psychoacoustic char-
acteristics of loudness, sharpness and roughness for the air-
borne noise of the four gear sets. The top-left diagram pres-
ents the order cuts of the mesh frequency. The amplitudes of 
the mesh order differ depending on the variant. The reference 
gear set (V1) with the conjugated topology has the lowest 
mesh frequency. V3 radiates noise with the highest content of 
the tooth mesh order.

Although the tooth mesh amplitude of the noise from V3 
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is highest, the loudness of the noise from V2 is higher. This 
is caused by the content of harmonics to the sixth order of 
the gear revolution in the signal. The excitation caused by the 
pitch error leads to an increase of the loudness by 50%. Be-
sides V2, the loudness of V3 is also higher than the loudness 
of the other variants.

The influence of the geometry on sharpness value is very 
little; the noise of all variants has similar sharpness values and 
the characteristic roughness is influenced by the pitch devia-
tion.

For the impact-noise sharpness, loudness and roughness 
are presented in Figure 9. Although the psychoacoustic char-
acteristics are only defined for structure-borne noise, the cal-
culations show a similar trend as do the values for the airborne 

Figure 5—Gear sets.

Figure 6—Noise analysis of a speed ramp.
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continued

noise in Figure 8.
The ranking of the order cut of the mesh frequency of the 

structure-born noise is the same as the corresponding rank-
ing for the airborne noise. The calculation of the loudness 
is also influenced by the pitch error. V2 shows the highest 
loudness level followed by the loudness of V3; the roughness 
also shows the same ranking for structure-borne noise and air-
borne noise. By using psychoacoustic calculations for impact 
noise, the separation effect is even higher than the resolution 
for airborne noise. One possible reason: the influence of envi-
ronmental noise in the airborne noise signal. The influence on 
the structure-borne noise is almost avoided by dampers and 
elastic couplings.

The example shows that the characteristic of the airborne 

noise is already included in the impact noise. Due to the trans-
fer path, all frequencies and modulations in the airborne noise 
are radiated from the surface of the test fixture; thus the oscil-
lation of the surface must already include all the information.

Figure 10 answers the question—Why is V2 noisy and 
why is its noise so rough?

In comparison to the envelope curve of the reference gear 
set (V1), the flow of the mesh amplitude of V2 is modulated 
higher. This signal was recorded at constant speed and con-
stant torque. The signal of the reference gear set is modulated 
with a dominant frequency of one pinion revolution. The sig-
nal of the gear set with the pitch error shows a modulation 
frequency that meets the sixth order referred to gear speed. 

Figure 7—Fourier analysis of impact and airborne noise.
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Fig. 8: Psychoacoustic evaluation of airborne noise
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Figure 8—Psychoacoustic evaluation of airborne noise.
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This strong modulation leads to an increase of the roughness.
The comparison of Figures 8 and 9 shows that all the in-

formation included in the airborne noise already exists in the 
structure-borne noise; the structure-borne noise is exacerbat-
ed by oscillating forces in the tooth mesh. For further inves-
tigations it is necessary to do a correlation analysis between 
the transmission error in tooth mesh and the structure-borne 
noise. The goal of these investigations should be to find pos-
sibilities to optimize the noise characteristic by changing the 
transmission error.

Summary and Outlook
The interior noise level of vehicles continues to decrease; 

thus noise from gearboxes is not masked by other sounds as 
in the past and requirements on gear noise quality are rising.

For gear design and quality objectives, physical character-
istics are used.

In reality, the consumer rates interior noise subjectively. 
For that reason evaluation of the same noise can differ.

Psychoacoustics can be one solution. Within this report 
psychoacoustic characteristics have been introduced and first 
analyses have been done on gear noise. Therefore different 
gear sets with a variation of micro-geometry and pitch devia-
tions have been chosen. Noise measurements have been done 
with these gear sets to investigate the relationship between 
gearing and gear noise. Sweeps have been done to investigate 
the speed influence on gear noise. The results show that loud-
ness is not only rising with the rotational speed; noise sharp-
ness is also rising—proportional to the speed.

Figure 9—Psychoacoustic evaluation of impact noise.

Figure 10—Envelope curve of the mesh frequency.
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The result of the comparison of the different gear designs 
is that the roughness of the gear noise is a characteristic value 
to determine the pitch deviation of a gear set. It was also pos-
sible to transfer the results from airborne noise to structure-
borne noise. For the investigated gear sets the psychoacoustic 
characteristics have been calculated for airborne noise as well 
as for structure-borne noise. The values show similar results 
for both signals.

At the end of this report a method was defined to use an 
input and output synchronous analysis to determine the rea-
son for noise phenomena.

In future investigations:
• The coherence between gearing parameters and  

 noise patterns will be further investigated. 
• Different gear designs will be manufactured. 
• A variation of micro- and macro-geometry will be
  done, as well as a variation of run-out and pitch error.

• Psychoacoustic values will be referred to the results 
 of tooth contact analysis to find correlations between
  psychoacoustic value and tooth contact. Based on this 
 functionality, orientated analyzing methods for gear 
 noise can be developed.
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