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Development of a Face-Milled Spiral Bevel Gearset
The following data are given for this example:
Method single indexing with Gleason straddle cut
Tooth depth along face width parallel
Shaft angle Σ = 90°
Offset  a = TTX = 0 mm
Number of pinion teeth  z1 = 13
Number of ring gear teeth  z2 = 35
Outer ring gear pitch diameter D02 = 190 mm
Face width b1 = b2 = 30 mm
Mean spiral angle  β1 = β2 = 30°
Pinion hand of spiral HOSP1 = left-hand
Nominal cutter radius Rw = 76.2 mm (6")
Pressure angle  αC = αD = 20°
Profile shift factor  x = x1 = –x2 = 0
Tooth depth factor  fDepth = 1
Top-root-clearance factor  fCL = 0.2
Profile side shift factor  xS = xS1 = –xS2 = 0
Pinion addendum  hK1 = (fDepth + x) × mn = 1.0mn

Pinion dedendum  hF1 = (fDepth + fCL – x) × mn = 1.2mn

Ring gear addendum  hK2 = (fDepth − x) × mn = 1.0mn

Ring gear dedendum  hF2 = (fDepth + fCL + x) × mn = 1.2mn

Wanted are the design data of the pinion and ring gear blanks, 
as well as the cutter specifications and basic machine settings.

Calculation of Blank Data
The calculation begins with the computation of the ring gear 
blank data. The geometrically relevant parameters are shown in 
Figure 1. The position of the teeth relative to the blank coordi-
nate system of a bevel gear blank is satisfactorily defined with 

the following data: RAUR; RINR; γ; ZFKR; ZTKR; and ZKKR. 
Those blank data are calculated from the given data as follows:

(1)
z1 / z2  = sinγ1 / sinγ2

(Regarding Eq.1, see also Eq.’s 10–12, Chapter 1)
The sum of the pitch angles of spiral bevel gears is equal to the 

shaft angle:
γ1 + γ2 = Σ –> γ1 = Σ − γ2

In case of a 90° shaft angle the relationship will simplify to:
(2)

γ1 = arctan (z1 / z2) = 20.38

Figure 1   Graphical specification of ring gear blank.

Bevel Gear Technology
Chapter 2
This article is the third installment in Gear Technology's series of excerpts from Dr. Hermann J. Stadtfeld's book, Gleason Bevel 
Gear Technology. The first two excerpts can be found in our June 2015 and July 2015 issues.

The goal of the following sections is to develop a deeper understanding of the function, limits and possibly the not fully utilized 
possibilities of bevel and hypoid gears.

The gear mathematics developed by the author is based on a triangular vector model that presents a comprehensive tool for 
simple observations in the generating gear, up to complex three-dimensional developments. Many types of bevel and hypoid 
gears can be observed and manipulated with this model — without alteration of the notation. However, at the most complex level 
the lengths and directions of the vectors change according to higher-order functions, depending on the rotational position of the 
generating gear (Refs. 1–2).

The first chapter of this book — “Nomenclature and Definition of Symbols” — should help to avoid or minimize the interrup-
tion of the flow in the gear theoretical developments with definitions of formula symbols.

At the beginning of this chapter the development of a face-milled, conjugate spiral bevel gearset is conducted. Next, an ana-
logue face-hobbed bevel gearset is derived that in a third step is converted to a non-generated (Formate) version. In step four 
an offset is added to the Formate spiral bevel gearset that results in a hypoid gearset. Consequences regarding the introduction 
of the hypoid offset and unique facts regarding general spatial transmissions are also discussed in this chapter. At the end of this 
chapter, length and profile crowning are added to the Formate bevel gearset that delivers a practical-use, angular transmission as 
it is used in industrial gear boxes; the reader will be able to apply the derivations to any other bevel and hypoid gearset. With the 
results of each calculation step, basic settings are computed as they are commonly used by modern CNC bevel gear generators in 
order to cut or grind real bevel gearsets. —Hermann J. Stadtfeld

Gear Mathematics for Bevel & Hypoid Gears
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(3)
γ2 = 90° − γ1 = 69.62°

Now the different cone distances, normal module, 
and mean pitch diameter can be calculated:

(4)
RM = D02 / 2 / sinγ2 − b2 / 2 = 86.34 mm

(5)
d02 = 2 × RM × sinγ2 = 161.87 mm

(6)
mf = d02 / z2 = 4.63 mm

(7)
mn = mf × cosβ2 = 4.00 mm

(8)
hK2 = 1.0 × mn = 4.00 mm

(9)
hF2 = 1.2 × mn = 4.80 mm

(10)
RINR2 = RM − b2/2 − hF2 / tanγ2 = 69.56 mm

(11)
RAUR2 = RINR2 + b2 = 99.56 mm

The positions of the cone apexes, the whole depth 
and the maximal ring gear diameter are:

(12)
ZFKR2 = +hF2 / sinγ2 = 5.12 mm

(13)
ZKKR2 = –hK2 / sinγ2 = – 4.27 mm

(14)
ZTKR2 = 0.00 mm

(15)
HGER = hK2 + hF2 = 8.80 mm

(16)
DUMR2 = 2(RAUR2 × sinγ2+HGER × cosγ2) = 192.78 mm

Pinion pitch angle and mean cone distance RM (which is 
equal for pinion and gear) have already been calculated in the 
course of the gear blank calculations. Only the inner and outer 
cone distance — as well as the cone apex positions — remain in 
the pinion blank calculation (Fig. 2). The value for addendum 
and dedendum is equal to the ring gear values, since no profile 
shift was applied to the present example:

(17)
hK1 = 1.0 × mn = 4.00 mm

(18)
hF1 = 1.2 × mn = 4.80 mm

(19)
RINR1 = RM − b1/2 − hF1 / tanγ1 = 58.42 mm

(20)
RAUR1 = RINR1 + b1 = 88.42 mm

The positions of the pinion cone apexes are:
(21)

ZFKR1 = + hF1 / sinγ1 = 13.78 mm
(22)

ZKKR1 = –hK1 / sinγ1 = –11.49 mm
(23)

ZTKR1 = 0.00 mm

All bold-printed parameters in this section are required for 
the definition of the toothed cones relative to the remaining pin-
ion and gear blank. Those design data are summarized in Tables 
1 and 2.

Calculation of Cutter Head Geometry
The nominal cutter radius was chosen a little bit smaller than 
the mean cone distance RM. This seems to be a good choice for a 
face-milled (single indexing process) bevel gearset if large load-
affected deformations are anticipated.

Although the nominal cutter radius is already given, the 
actual radii of inside and outside blades for gear and pinion 
cutter head have to be calculated depending on the chosen cut-

Figure 2   Pinion blank specification.

Table 1   Numerical ring gear blank specifications
Ring Gear - Blank Data

Variable Explanation Value Dimension
z2 number of ring gear teeth 35 -

RINR2 inner cone distance (along root line) 69.56 mm
RAUR2 outer cone distance (along root line) 99.56 mm

GATR2 = γ2 pitch angle 69.62 °
GAKR2 face angle 69.62 °
GAFR2 root angle 69.62 °
ZTKR2 pitch apex to crossing point 0.00 mm
ZKKR2 face apex to crossing point –4.27 mm
ZFKR2 root apex to crossing point 5.12 mm

DOMR2 = mf2 face module 4.63 mm
HGER whole depth of teeth 8.80 mm

Table 2   Numerical pinion blank specifications
Pinion - Blank Data

Variable Explanation Value Dimension
z1 number of teeth pinion 13 -

RINR1 inner cone distance (along root line) 58.42 mm
RAUR1 outer cone distance (along root line) 88.42 mm

GATR1 = γ1 pitch angle 20.38 °
GAKR1 face angle 20.38 °
GAFR1 root angle 20.38 °
ZTKR1 pitch apex to crossing point 0.00 mm
ZKKR1 face apex to crossing point –11.49 mm
ZFKR1 root apex to crossing point 13.78 mm

DOMR1 = mf1 face module 4.63 mm
HGER whole depth of teeth 8.80 mm
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ting method. Since the method is Gleason straddle cut, the pin-
ion blades cut a tooth slot while the gear blades are cutting a 
tooth — i.e., two proceeding “half-slots.”

Figure 3 shows (left) the corresponding blades of pinion 
and ring gear (see also Figs. 12–15, Chap. 1, Part II, July Gear 
Technology). The generating plane intersects with the blades at 
the height of the calculation point. In order to generate the cor-
rect tooth thickness, the distance from the calculation point on 
the inside blade to the calculation point on the outside blade has 
to be equal to one-half of the normal pitch, plus one-half of the 
normal backlash. The blade tips extend about the tooth deden-
dum (hF) — beyond the generating plane (blade dedendum). 
The blade contours in Figure 3 are therefore not exactly con-
gruent to each other, but by the backlash values different on the 
flanks and by the clearance values different at the roots (tips). 

Since the aim in this first flank generating example is to achieve 
a conjugate pair, it seems appropriate to set the backlash SPLF 
for this example to zero.

As a result the following calculations will sufficiently deter-
mine the required cutter head and blade parameters:

(24)
tB = π × mn = 12.57 mm

(25)
SPLF = 0.00 mm

Table 3   Cutter head and blade specifications
Cutter Head and Blade Data

Variable Explanation Value Dimension
S89011,2 reference point to blade tip pinion 4.80 mm
S89033,4 reference point to blade tip gear 4.80 mm
WAME1 blade phase angle pinion convex 0.00 °
WAME2 blade phase angle pinion concave 0.00 °
WAME3 blade phase angle ring gear convex 0.00 °
WAME4 blade phase angle ring gear concave 0.00 °
XSME1,2 blade offset in pinion cutter head 0.00 mm
XSME3,4 blade offset in ring gear cutter head 0.00 mm
RCOW1 cutter point radius pinion inside blade 74.80 mm

RCOW2
cutter point radius pinion outside 

blade 77.59 mm

RCOW3
cutter point radius ring gear inside 

blade 81.09 mm

RCOW4 
cutter point radius ring gear outside 

blade 71.31 mm

ALFW1 blade angle pinion inside blade 20.00 °
ALFW2 blade angle pinion outside blade 20.00 °
ALFW3 blade angle ring gear inside blade 20.00 °
ALFW4 blade angle ring gear outside blade 20.00 °

Figure 3   Pinion and ring gear blade geometry.

Figure 4   Ring gear, basic machine model: upper graphic — front view; 
lower graphic — top view.
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(26)
ALFW1 = ALFW2 = ALFW3 = ALFW4 = α = 20.00°

(27)
RCOW1 = RW − tB/4 − SPLF/4 + hF1 × tanALFW1 = 74.80 mm

(28)
RCOW2 = RW + tB/4 + SPLF/4 − hF1 × tanALFW2 = 77.59 mm

(29)
RCOW3 = RW + tB/4 − SPLF/4 + hF2 × tanALFW3 = 81.09 mm

(30)
RCOW4 = RW − tB/4 + SPLF/4 − hF2 × tanALFW4 = 71.31mm

(31)
S8901 = S8902 = hF1 = 4.80 mm

(32)
S8903 = S8904 = hF2 = 4.80 mm

All parameters printed in bold are required for the definition 
of the pinion and ring gear cutter heads required. Those results 
are summarized in Table 3.

Calculation of Basic Settings for the Cutting 
Machine
The basic machine, as defined by Weck and Schriefer (Ref. 3), 
follows a clear systematic with 10 coupled Cartesian coordinate 
systems, beginning with system 1, which defines the work gear 
position via system 4 which defines the generating gear plane 
with its axes axis X4–Z4 and the generating gear axis with its axis 
Y4 to system 10, which defines the cutter head axis with Y10 and 
the position of the blade origin (blade tip) with Z10.

Figure 4 only includes the systems 1, 4, 9 and 10 — which 
are required for the basic bevel gear calculation covered in this 
chapter.

The observations and machine setting calculation are first 
conducted for the ring gear and then the pinion. First we 
observe the generating gear plane X4–Z4 (Fig. 4), in which the 
mean cone distance RM is drawn from the origin of the coordi-
nate system along the positive Z4 axis. At the tip of the RM vector, 
the mean face position is located, which is the point of a curved 
tooth, where the spiral angle β has to be equal 30°. The spi-
ral direction shown in Figure 4 is consistent with a right-hand 
ring gear that has a mating pinion with a left-hand spiral direc-
tion (the view in Figure 4 is directed to the back-side of the ring 
gear). The spiral angle in each point of a flank is the angle in the 
generating gear plane between the flank tangent and the con-
necting line to the generating gear axis. In Figure 4 it is the angle 
β between flank tangent and Z4 axis. This now allows the posi-
tioning of the cutter radius vector RW with its tip perpendicular 
to the flank tangent. The solution vector in this observation is 
the eccentricity vector EX, which already includes a number of 
machine settings.

(33)→
EX = 

→
RM − 

→
RW

(34)
With: 

→
RM = {0., 0., RM} = {0., 0., 86.34}

(35)→
RW = RW {–cos β, 0., sin β}

(36)→
RW = {– RW cos β, 0., RW sin β} = {–65.99, 0., 38.10}

(37)
Resulting in: 

→
EX = {65.99, 0., 48.24}

Utilizing the EX vector, the following machine settings can be 
calculated:

(38)
Center roll position: W4503,4 = arctan (EXX / EXZ) = 53.83°

(39)
Radial distance: TZMM3,4 = √EXX² + EXZ² = 81.74 mm

(40)
Sliding base: TYMM3,4 = EXY = 0.00 mm

Additional machine settings can be found from the graphical 
relationship in Figure 4:

(41)
Machine root angle: AWIM3,4 = –90° – γ2 = –159.62°

(42)
Machine center to crossing point: TZ2M3,4 = 0.00 mm

(43)
Offset in the machine: TX2M3,4 = 0.00 mm

Further values such as cutter head tilt WXMM3,4 and tilt ori-
entation WYMM3,4 are also zero in the observed conjugate 
design.

For the exact definition of the ring gear to be generated, the 
ratio of roll between generating gear and work gear is still miss-
ing. Using (Chapter 1, Part II, July Gear Technology) Equations 
11 and 12, the ratio of roll can be computed with:

(44)
UDIF3,4 = sinγ2 = 0.937404

The ratio of roll number requires at least a mantissa with 6 
digits, since the influence onto the gear geometry is correspond-
ingly sensitive.

The second part of the machine setting calculations, the dem-
onstrated gear calculations are repeated analogous for the pin-
ion. At first, we observe the generating gear plane X4–Z4 (Fig. 5) 
in which the mean cone distance RM is plotted from the coordi-
nate origin along the positive Z4 axis.

At the tip of the RM vector, the mean face position of a curved 
tooth is located whose tangent in this point should show a spiral 
angle β of 30°. The spiral direction shown in Figure 5 is consis-
tent with a left-hand pinion (in Fig. 5 (top) the view is directed 
from the back to the pinion). The spiral angle in each point of a 
flank is the angle in the generating gear plane between the flank 
tangent and the connecting line to the generating gear axis. In 
Figure 5 it is the angle β between flank tangent and Z4 axis. This 
allows now the positioning of the cutter radius vector RW with 
its tip perpendicular to the flank tangent. The solution vector 

Figure 5   Pinion basic machine model: upper graphic — front view; 
lower graphic — top view.
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in this observation is the eccentricity vector EX, which already 
includes a number of machine settings.

(45)
With: 

→
RW = {RWcosβ, 0., RWsinβ} = {65.99, 0., 38.10}

(46)
Resulting in: 

→
EX = {–65.99, 0., 48.24}

By means of the EX vector the following machine settings can 
be calculated:

(47)
Center of roll: W4501,2 = arctan (EXX / EXZ) = –53.83°

(48)
Radial distance: TZMM1,2 = √EXX² + EXZ² = 81.74 mm

(49)
Sliding base: TYMM1,2 = EXY = 0.00 mm

Additional machine settings can be found from the graphical 
relationship in Figure 5:

(50)
Machine root angle: AWIM1,2 = –90°–γ1 = –110.38°

(51)
Machine center to crossing point: TZ2M1,2 = 0.00 mm

(52)
Offset in the machine: TX2M1,2 = 0.00 mm

Further values, such as cutter head tilt XMM1,2 and tilt orien-
tation WYMM1,2 are also zero in the observed conjugate design.

For the exact definition of the pinion to be generated, the 
ratio of roll between generating gear and work gear 
is still missing. From (Chap. 1, Part II, July Gear 
Technology) Equations 11 and 12, the ratio of roll can 
be computed with:

(53)
UDIF1,2 = sinγ12 = 0.348245

All bold-printed values calculated in this section 
are input values for a bevel gear cutting simulation 
program, whose functionality is discussed in the next 
section. The machine settings are summarized in 
Table 4.

Simulation of the Gear Cutting Process 
and Tooth Contact Analysis of Face-Milled 
Spiral Bevel Gearset Example
A typical example of a simulation program is the 
FVA Bevel-Gear-Chain, which was developed at 
the Machine Tool Laboratory of the University of 
Aachen (Ref. 3). Some of today’s commercially avail-
able software systems for bevel gear calculation and 
optimization have been developed on the basis of 
this universal software tool. The analysis and experi-
mentation, introduced in the following chapters, are 
also based on an advanced version of the FVA Bevel-
Gear-Chain. This software utilizes the same data as 
is used in modern free-form bevel gear cutting and 
grinding machines for the manufacture of real bevel 

gear sets. The core of this program is a flank generating module 
that applies the coordinate systems of Figures 4 and 5 to model a 
generating gear.

In the generating gear system Xc–Yc–Zc (system Sc) in Figure 
6, a generating gear flank point is given by position vector PcSa 
and normal vector N. The application of the gearing law (Chap. 
1, Eq. 1, June Gear Technology) delivers the rotation angle φac 
into the contact position (system Sa), in which the solution 
point Pc and the solution normal vector –N is found in a coor-

Table 4   Geometrical and kinematical machine settings
Machine Basic Settings

Variable Explanation Value Dimension
WXMM1,2 cutter head tilt pinion 0.00 °
WXMM3,4 cutter head tilt ring gear 0.00 °
WYMM1,2 swivel angle pinion 0.00 °
WYMM3,4 swivel angle ring gear 0.00 °
W4501,2 center of roll position pinion –53.83 °
W4503,4 center of roll position ring rear 53.83 °

TYMM1,2 sliding base position pinion 0.00 mm
TYMM3,4 sliding base position ring gear 0.00 mm
TZMM1,2 radial distance pinion 81.74 mm
TZMM3,4 radial distance ring gear 81.74 mm
AWIM1,2 machine root angle pinion –110.38 °
AWIM3,4 machine root angle ring gear –159.62 °
TX2M1,2 pinion offset in the machine 0.00 mm
TX2M3,4 ring gear offset in the machine 0.00 mm
TZ2M1,2 machine center to crossing point pinion 0.00 mm
TZ2M3,4 machine center to crossing point gear 0.00 mm
UTEI1,2 indexing ratio of pinion cutting 0.00 -
UTEI3,4 indexing ratio of ring gear cutting 0.00 -
UDIF1,2 ratio of roll for pinion cutting 0.348245 -
UDIF3,4 ratio of roll for gear cutting 0.937404 -

Figure 6   Kinematical relationships to solve gearing law equation.
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dinate system Xb–Yb–Zb (system Sb) as position vector PcSb. In 
order to find a comprehensive flank as a result of computing 
a larger amount of individual points, which are necessary in 
order to define an entire flank (symbolized with surface Ab), 
the solution point has to be rotated “back” in its final position 
(system Sd). The angle φbd between the contact position and the 
final position is found by multiplication of the rotation angle 
φac (in the generating gear system) with the ratio of roll. Figure 
6 also shows that in the contact position the relative veloci-
ties vab = va − vb — and therefore the sliding and rolling veloci-
ties — can be determined rather easily.

The cutting edges, which are defined in the input data as 
lines, are treated in the flank surface generation program as a 
summation of discrete points; the rotation of the cutter head 
delivers a velocity vector in the respective cutting edge point. 
The vector product between the velocity vector and the cutting 
edge tangential vector results in a normal vector, which togeth-
er with the cutting edge point, by solving the gearing law (as 
explained in Fig. 6), delivers a point and a normal vector of the 
work gear flank that is subject to the generating process. In a do 
loop the given number of cutting edge points — YP10 — are pro-
cessed for each angular cutter head position (Fig. 7).

The result is the so-called “natural flank grid,” which ends at 
the root fillet but extends beyond the tooth boundaries in all 
other directions. It becomes evident from Figure 7 that the dis-
tortions of the natural flank grid are caused by the changing 
generating conditions. In order to achieve a flank grid — which 
fits the real tooth boundaries — the desired flank grid, known 
until now only in the YRI-ZRI plane, is correlated to the natu-
ral grid (projected into the YRI-ZRI plane). The distance of a 
respective point of the flank grid to the closest point of the natu-
ral grid leads to new given cutter head angle φ89Y and cutting 
edge point YP10. The generating process with this new point 
will reduce the distance between the desired flank point and the 
actual generated point. This procedure 
is repeated in a semblance of an iteration 
until the distance lies within an iteration 
limit of usually 0.0002 mm. Flank sur-
face points calculated with this method 
show an accuracy of 10-5 mm. The normal 
directions within the flank working area 
without undercut have deviations below 
half an angular minute.

The resulting flank surfaces are interpo-
lated with bi-cubical spines in order to pro-
vide any in-between point with high accu-
racy during the following roll simulation 
between pinion and gear.

For the roll simulation the pinion flanks 
with their coordinate system XRI-YRI-
ZRI are located in the correct position 
relative to the ring gear flanks with their 
coordinate system XRA-YRA-ZRA. This 
relative position is defined by the shaft 
offset vector TT and the shaft angle Σ. 
The signified blanks of pinion and ring 
gear are shown in Figure 8. In the pres-
ent example the shaft angle is 90° and the 

Figure 7   Flank grid and natural flank grid.

Figure 8   Arrangement of pinion and ring gear for roll simulation.

Figure 9   Graphical results of roll simulation (TCA) of face-milled gearset.
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TT vector is zero — which defines a spiral bevel gearset without 
hypoid offset. In order to evaluate the properties of the gearset 
under load with deflected gear box housing, it is possible to use 
shaft angles that deviate from 90° together with any offset vector 
TT. The results of a roll simulation are Ease-Off, tooth contact 
pattern, and motion transmission error. In order to correlate 
those results in a meaningful way with the tooth flanks of the 
evaluated gearset, the flank projection into the plane ZRA-YRA 
(points A, B, C and D) is defined as presentation plane (Fig. 8). 
The Ease-Off is a three-dimensional graphic of the flank devia-
tions from a conjugate pair; it is calculated by rolling the pinion 
flank “into” the gear coordinate system according to the gearing 
law, resulting in a virtual gear flank that is conjugate to the actu-
al pinion flank. This conjugate gear flank will then be compared 
to the present gear flank, where all differences in arc length are 
plotted point-by-point in ordinate direction into the Ease-Off 
graphic.

If both mating bevel gears have conjugate manufacturing data, 
then the Ease-Off graphic has no deviations in ordinate direc-
tion. Also, if the pinion flanks and gear flanks have spiral angle 
errors of equal amounts, the Ease-Off graphic will not show any 
deviation. And although the individual gears are considered 
incorrect in this case, they will roll conjugate with each other, 
which subsequently leads to an Ease-Off without any ordinate 
values. Further explanations regarding roll simulation and tooth 
contact analysis results are presented in Chapter 4 (Nov.-Dec. 
Gear Technology).

The roll simulation analyses results of the bevel gearset cal-
culated in this chapter (in its theoretical zero position) can be 
observed in Figure 9. In the left column the results of the coast-
side are shown, which is the combination of the convex pinion 
flank and the concave ring gear flank. In the right column the 
results of the drive-side are shown, which is the combination of 
the concave pinion flanks and the convex ring rear flanks. The 
drive-side is the preferred flank combination; the reasons for 
the superior rolling conditions of the drive-side are discussed in 
Chapter 4.

Just like the theoretical goal, a conjugate gear pair with zero 
Ease-Off was created. The motion graphs in the middle section 
of Figure 9 only show some “numerical noise” along the abscissa 
of the diagrams, meaning there is no transmission error in any 
of the roll positions. The contact bearings in the lower section of 
Figure 9 show contact lines, which extend inside the entire flank 
working areas.

The flank working area is the common surface between the 
active pinion flank that is rolled with the active ring gear flank. 
For a better understanding of the flank working area, the previ-
ously mentioned rolling of the pinion flank into the ring gears 
coordinate system can be employed. If the resulting conjugate 
ring gear flank is projected into the presentation plane (rota-
tional projection) where it overlays the area of the actual ring 
gear flank (which is already projected into the presentation 
plane), then the working area is defined as the area where both 
the conjugate gear flank and the real gear flank exist. It seems 
obvious that no flank contact or correct rolling outside of this 
area is possible. On the heel and toe borders only “air” is present 
outside of the working area of one of the two flanks (or both). 
At top and root either the rolled on top edge of the one flank, or 

the border to the root fillet of the other flank is the limitation. 
Caution is required if the root fillet border is the limitation. In 
many cases this leads to interferences that can cause noise and 
surface damage. The flank working areas in Figure 9 end along 
the horizontal coordinate axis (coast-side on the top, drive-side 
on the bottom) that represent the transition line between flank 
and ring gear root fillet.

On the opposite sides (coast-side on the bottom, drive-side 
on the top) exists a non-working area between ring gear face 
edge and tooth contact zone, pointing to a “pulled-up” pinion 
root transition that migrates into undercut in the toe region. A 
pulled-up pinion root transition is more dangerous than under-
cut, since interferences can occur that can lead to flank surface 
damage, as mentioned above. The result in many cases is the 
population of pitting and even tooth fracture. Intentionally, no 
profile shift was applied in the present example in order to dem-
onstrate the motivation to introduce a profile shift. In a simpli-
fied observation a negative ring gear profile shift with a magni-
tude equal to the white zone at the top of the ring gear tooth is 
required (app. 1.75 mm).

Profile shift:
(54)

Δh = x2 × mn = x2 × 4.00 mm = –1.75 mm
(55)

x2 = –0.448
In bevel and hypoid gears, generally the V0 system is applied, 

which allows determination of the pinion profile shift as:
(56)

V0  x1 + x2 = 0.00 − > x1 = –x2 = 0.448

This will shorten the gear addendum and lengthen the gear 
dedendum, which will result in a match between the common 
flank area and the active flank working area. The region with 
incorrect roll conditions along the pinion root will be eliminat-
ed by using the optimal part of the involute. The white region 
along the ring gear top will now be filled with contact lines and 
the active flank working area will be maximized. 
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