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There is a great need for future powertrains in automotive and industrial applications to improve upon their efficiency and power 
density while reducing their dynamic vibration and noise initiation. It is accepted that planetary gear transmissions have several 
advantages in comparison to conventional transmissions, such as a high power density due to the power division using several 
planet gears (Ref. 1). This paper presents planetary gear transmissions, designed according to ISO 6336 (Ref. 3), optimized in terms of 
efficiency, weight and volume, and calculated using low-loss involute gears (Ref. 4) as well as the maximum feasible number of planets.

Introduction
As mentioned, planetary gear transmissions generally feature 
various advantages in relation to conventional gear transmis-
sions, such as higher efficiency, higher feasible gear ratios, com-
pactness and lower weight. Present research concentrates on 
planetary gear transmission designs with a low volume, low 
power losses and, therefore, high efficiency values. Most of the 
present applications are characterized by basic planetary gear 
trains as an integral part of the synthesis process to achieve dif-
ferent transmission types, such as negative-ratio and positive-
ratio drives. The power density of planetary gear transmissions 
is dependent on the adjusted number of planets linking two cen-
tral gears. The input power of a central gear is then distributed 
to several planet gears, resulting in lower load and lower tooth 
forces for each gearing. Depending on the alignment of each 
gear wheel, or, rather, the chosen planetary gear transmission 
structure, different efficiency, volume and weight values can be 
achieved. Especially in combination with the desired transmis-
sion gear ratio, it is not obvious which gear train type ought to 
be chosen in order to provide an optimal transmission in terms 
of efficiency, volume and weight.

Outline
The objective of this paper is to calculate and compare the vol-
ume, weight and efficiency of three basic planetary gear trans-
missions with one degree of freedom (Fig. 1), applying three 
different gear ratios (5, 25 and 125). Due to the fact that this 
study focuses on reducing volume and weight, the lowest fea-
sible number of gear teeth and as many planets as possible will 
be applied to each concept in order to reach a preferably high 
power density. In order to comply with the demand of high effi-
ciency values, special low-loss gears will be designed that feature 

low load-dependent power losses due to low sliding in the load-
ed gear meshes. The gears of each concept and each gear ratio 
are designed according to ISO 6336 (Ref. 3), with optimized 
tool parameters to produce characteristically low-loss gears. 
The volume of each concept is calculated assuming the gear 
wheels, as well as the two-sided carrier shafts, to be solid cylin-
ders. For the sake of simplicity, detailed shaft geometries, as well 
as the weight and additional power losses of bearings and other 
machine elements, are not considered here.

Kinematic Equivalence of Planetary Gear 
Transmissions
Mueller’s book (Ref. 1) provides basic information and rules for 
planetary gear trains, such as for fundamental positive-ratio and 
negative-ratio drives with a fixed carrier, as well as for coupled 
or complex-compound planetary gear transmissions. According 
to Mueller, two fundamental planetary gear trains are kinemati-
cally equivalent if one gear ratio of a transmission is equal to 
one gear ratio of another transmission. In that case, all other 
gear ratios are equal too. Thus this rule reveals that multiple 
planetary gear train types can come into consideration if they 
feature the same desired gear ratio between the input and output 
shaft.

For the predefined gear ratios, one negative-ratio drive and 
two structurally different positive-ratio drives will be designed 
and compared (Fig. 1). The calculation of the gear ratios for 
each concept (Table 1) shows the kinematic equivalence, since 
all of the concepts have the same gear ratios. One can easily rec-
ognize that each fundamental planetary gear train always fea-
tures four positive and two negative ratios. Furthermore, the 
corresponding input and output shafts, as well as the required 
basic gear ratio i12, can be derived for all transmission con-
cepts of this study. For instance, Central Gear 1 is used as the 
input shaft, and the carrier as the output shaft for Concept A; 
the input and output shafts of Concepts B and C are the carrier 
shafts and Shaft 1, respectively.

Table 1  Gear ratios of the given transmission concepts
Gear Ratio Concept A Concept B Concept C

i12 –4 0.8 0.8
i21 –0.25 1.25 1.25
i1s 5 0.2 0.2
is1 0.2 5 5
i2s 1.25 –0.25 –0.25
is2 0.8 –4 –4Figure 1  Planetary gear transmission concepts.
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Design of Light-Weight Planetary Gear 
Transmissions
In order to ensure valid comparison of the different transmis-
sion concepts, several default parameters must be pre-defined 
for the design process of the gears. Each input shaft is applied 
with a pre-set torque of 300 N-m and a speed of 1,500 rpm. A 
fixed number of teeth are applied at that gear of each transmis-
sion concept with the minimum carrying load—a minimum 
of 17—according to Mueller (Ref. 1). Further geometric con-
straints must be met to properly assemble the planetary gear 
transmission. These geometric constraints mainly refer to the 
number of gear teeth applied in compliance with Looman’s 
assembly rules for planetary gear transmissions (Ref. 5). To 
achieve compact transmission designs, the number of teeth gen-
erally has to be as low as possible, since the number of teeth z is 
proportional to the reference diameter d of each gear:

(1)
d = z · mn

For further considerations, geometric relations will only be set 
up as a function of the number of teeth, which is valid as long as 
the normal module mn is constant for each gear of a transmis-
sion concept. In this case the number of teeth is proportional to 
the corresponding reference diameter, and diameters of differ-
ent gears can be compared on the basis of their number of teeth. 
After determining the number of gear wheel teeth in each con-
cept, the minimum normal module at the gearing, including the 
gear with the minimum number of teeth, is calculated according 
to ISO 6336 (Ref. 3), assuming the ratio between tooth width 
b and reference diameter d to be 1:0. Further requirements to 
ensure proper comparison of the three concepts refer to the fac-
tors (application factor KA, dynamic factor KV, transverse load 
factor KHα face load factor KHβ, which are each set to 1:0. The 
mesh load factor kg is chosen according to AGMA 6123-B06 
(Ref. 6) for the ISO quality of 6 and according to the number of 
planet gears applied to the transmission concept.

Determining the number of teeth. Assembling planetary gear 
transmissions is more complex than conventional spur gear 
transmissions; additional geometric constraints fundamentally 
result from integrating several planets between at least two cen-
tral gears (sun and/or ring gears). Thus the number of teeth is 
determined in such a way that, on the one hand, all geomet-
ric constraints are satisfied, and on the other hand, the other 
requirements concerning low weight and volume, as well as high 
efficiency, are optimally met. The following procedure is used to 
determine the minimum feasible number of teeth:
1. Select the number of teeth on each gear wheel so that the gear 

ratio deviation between the input and the output shaft is lower 
than ± 10%

2. Apply as many planets as possible to each concept without 
causing a collision of adjacent planet gears

3. Select the number of teeth on each gear wheel so that all gears 
can be assembled according to Looman’s assembly rules (Ref. 
5)

4. Apply the minimum number of teeth — 17 — at the gear 
wheel with the lowest theoretical (loss-free) load

5. The center distance of each gear pair of one concept (sun/
planet gear or ring/planet gear) must be equal
Using a small number of teeth while also complying with fur-

ther assembly rules will create a gear set with a number of teeth 

that meet the desired transmission gear ratio, with only a cer-
tain deviation. When even higher gear ratios are desired, this 
deviation tends to result in higher particular values. The cen-
ter distance for Concept A has to be equal for both gear pairs 
(sun gear/planet gear and planet gear/ring gear) because one 
gear is used in both gear pairs—the planet gear. For Concepts 
B and C the center distances of both gear pairs must be equal, 
thus enabling both planet gears to be connected to one stepped 
planet gear shaft (assuming the same normal module for both 
gear pairs). Nominal differences in the center distances of each 
gear, according to the calculated number of teeth, can be offset 
by applying appropriate addendum modifications × to the gears 
(assuming the same normal module for both gears).

Concept A: For Concept A, the shaft with the minimum act-
ing torque is Input Shaft 1, so zmin is applied to the sun gear. The 
number of teeth on ring gear z2 can be derived directly from the 
basic gear ratio i12: (2)

i12 =
z2 → z2 = i12 z1z1

The number of teeth on the planet gear can be derived from 
the geometric constraint that the center distances of each gear 
pair must be equal. This constraint, reduced by the normal 
module and using a negative number of teeth for the ring gear, 
reads as follows:

(3)
0 = z1 + 2 = zp + z2

zp = – z2 + z1
2

In the next step the maximum number of planet gears must 
be determined in order to minimize the acting load in each gear 
mesh (power division). Figure 2a shows the geometric limit 
case where adjacent planet gears are in contact with each other, 
assuming the tip diameter of the planet gears to be the number-
of-teeth-plus-two, which equates to the reference-diameter-
plus-two-times the normal module:

(4)

cos α = zp + 2
z1 + zp

with α = 90 – β = 90 – 360
2 2 · nmax

Rearranging this equation yields the maximum number of 
planet gears nmax for the given number of teeth, nmax = :

Figure 2  Assembly of planets.
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(5)

nmax = 360
2 · (90 – arccos 

zp + 2 )z1 + z

which has to be rounded down to the next integer value. In 
the last step, the assembling rule according to Looman (Ref. 
5) has to be satisfied so that the planet gears can be mounted. 
Depending on the numbers of teeth—as well as the transmission 
structure—the following equation must be true:

(6)

f = integer value = |z1| + |z2|
n

for basic negative-ratio drives with the applied number of 
planet gears n. If this equation is not fulfilled, the correspond-
ing gears cannot be assembled. Thus the number of teeth on the 
planet and ring gears must be increased until Equations 3 and 6 
are satisfied.

Concept B: As with Concept A, several geometric constraints 
must be fulfilled in order to assemble this type of planetary gear 
train. The basic gear ratio of Concept B is given by:

(7)

i12 =
zp1 · z2
z1 zp2

Unlike Concept A, it is not as easy to calculate suitable num-
bers of teeth for Concept B. Fundamentally, four unknown 
parameters must be determined. One unknown variable can 
be defined by the minimum number of teeth for planet gear p1, 
which is loaded with the minimum (loss-free) torque for this 
concept. The next essential equation must be met in order to 
comply with the equal center distances of gear pairs p1:1 and p2:2 
so that both planet gears have the same axis of rotation:

(8)
zp1 + z1 = zp2 + z2

The maximum applicable number of planets for this concept 
can be determined according to the geometric limit case (Fig. 
2b). The avoidance of a collision of adjacent planets has to be 
proved for the gear pair with sun 2 and planet gear p2. As both 
gear pairs feature planets, which could theoretically touch each 
other, a collision analysis must be conducted for both gearings. 
Nonetheless, it is sufficient to check only the gear pair with the 
planet gear that has the higher number of teeth and, therefore, 
the higher tip diameter. Thus if the planets of gear pair p2:2 do 
not collide, then the planets of gear pair p1:1 will not collide 
either, due to their lower number of teeth. The following equa-
tion must be true for the geometric limit case:

(9)

cos α = zp2 + 2
2 · x

x = zp2 + 2
2 · cos α

– z2 =
zp2 + 2 + zp2cos α

If a collision does not occur at the planet gears p2, then no 
collision can occur at adjacent planet gears p1, due to their 
smaller diameter. In conclusion, three equations can be set up 
for three unknown numbers of teeth. Transforming Equations 

7, 8 and 9 yields a quadratic equation for the number of teeth on 
planet gear p2:

(10)
y1 · z2

p2 + y2 · zp2 + y3 = 0

with the following coefficients:
(11)

y1 =
– 1

cos α

y2 =
cos α · i12 +  zp1 – 2 · i12 + zp2i12 · cos α

y3 =
2 · zp2

i12 · cos α

Solving the quadratic equation yields the number of teeth on 
planet gear p2:

(12)

zp2 = – y2 ± √y2
2 – 4 · y1 · y3

2 · y1

Only the solution resulting in a positive number of teeth can 
be used for external gears by definition such as the planet gear 
p2. The missing numbers of teeth can then be derived from 
Equations 7 and 8. According to Looman (Ref. 5), the assem-
bling rule for Concept B reads:

(13)

f = |z2| · zp1 – zp2 |z1| = integer valuen · T

with the greatest common divisor of zp1 and zp2. If Equation 13 is 
not satisfied for the calculated number of teeth, then the num-
ber of teeth for central gears 1 and 2 must be increased as long 
as Equations 8 and 13 are fulfilled.

Concept C: For Concept C, no additional equations need be 
set up in order to determine the number of teeth; all of the nec-
essary equations can be derived from the geometric constraints 
of Concepts A and B. The minimum number of teeth is like-
wise applied to the gear wheel with the lowest (loss-free) load—
planet gear p1. The equation for the basic gear ratio of Concept 
C can be determined as in Equation 7, and the center distance 
constraint of Concept B (Eq. 8) must be true for Concept C as 
well. As with Concept B, the critical transmission gear pair for 
a potential planet collision is gearing p2:2. Because the structure 
of Concept C is similar to that of Concept A in terms of a poten-
tial planet collision (only the ring gear doesn’t exist, but is need-
ed neither for Concepts A nor C to detect a planet collision), the 
same appropriate Equation 6 of Concept A can be used, substi-
tuting zp with zp2, accordingly. The resulting quadratic equation 
for the number of teeth on planet gear p2 can be solved analo-
gously to Equation 10 with the following coefficients:

(14)
y1 = 1

y2 =  zp1 · cos α – zp1 + 2 – zp1 · cos αi12

y3 = – zp1 · 2
i12

Solving the quadratic equation for Concept C yields the num-
ber of teeth for planet gear p2; only solutions resulting in a 
positive number of teeth for the external planet gear p2 are per-
missible, per definition. The missing number of teeth for cen-
tral gears 1 and 2 is derived from Equations 7 and 8; Looman’s 
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assembling rule for Concept C is equal to that of Concept B (Eq. 
13), and must be true for the determined numbers of teeth. If 
this equation is not satisfied, the numbers of teeth for central 
gears 1 and 2 must be increased until Equations 8 and 13 are ful-
filled.

Low-loss gears for external and internal gears with highest 
efficiency. Low-loss gears in transmissions are typically used 
whenever high efficiency values are necessary. Power losses in 
the meshing of a gear pair are mainly caused by load-dependent 
power losses that depend on the acting load, coefficient-of-
friction and sliding velocities in the meshing of the gearing. In 
terms of efficiency, calculation of the average power losses in the 
meshing is accurate enough to determine the load-dependent 
power losses, or, rather, the efficiency of a gear pair. According 
to Niemann (Ref. 7) the load-dependent power loss Ploss reads:

(15)
Ploss = μm · HV · Pin

with the mean coefficient-of-friction µm and the tooth loss 
factor HV, according to Ohlendorf (Ref. 8):

(16)

HV = π · (i + 1) (1 – εα + ε2
1 + ε2

1)zp1 · i cos βb

In order to obtain efficient gears with minimal load-depen-
dent power losses, it is obvious that the tooth loss factor, as well 
as the mean coefficient-of-friction, must be reduced. Wimmer 
(Ref. 4) highlights several parameters that have a significant, 
positive influence on these two factors, such as a low transverse 
contact ratio εα, a low normal module mn, a high pressure angle 
αn and a high number of teeth on pinion z1. Figure 3 shows a 
conventional and a low-loss external gear. One can notice that 
the low-loss gear wheel features a higher tooth depth in com-
parison to the conventional gear wheel, due to a reduced trans-
verse contact ratio εa. Moreover, the face width of the low-loss 
gear wheel must be increased to obtain the same load-carrying 
capacity (in particular, surface durability and tooth-bending 
stress are affected). Regarding the geometry of a characteris-
tic low-loss gear set, ideally for the gearing p:2 of Concept A, 
with a gear ratio of 5, one can determine that the pitch point of 
the gearing is roughly in the middle of the tooth depth. For low 

tooth-load factors, the addendum contact ratio of the pinion 
and wheel ε1 and ε2 should preferably have the same value.

For this study several parameters are predetermined and can-
not be changed within the optimization process to improve effi-
ciency. The following parameters, which are part of the optimi-
zation and have an impact on the tooth-loss factor and mean 
coefficient-of-friction, as well as on the gearing volume, are the 
center distance a; the addendum modification of pinion and 
wheel x1,2; the tooth width b and the normal module mn.

Calculation of the load-carrying capacity. In addition to an 
optimized gear pair for high efficiency values, calculation of 
the load-carrying capacity of each gear pair must be proved in 
terms of surface durability (pitting) and tooth-bending strength. 
The fatigue-durable design of the gear wheels is created using 
well-established values for the safety factors against pitting 
(SH,min = 1.3), and against tooth breakage (SF,min = 1.7). Further 
default values are used for all gear pairs to ensure proper com-
parison, such as the normal pressure angle αn = 20°, the helix 
angle β = 0° and a pre-defined lubricant (ISO–VG–220). In addi-
tion to optimizing the tooth flank to obtain low power losses, 
each transmission stage is optimized in terms of a minimum 
gear wheel volume so that the normal module and tooth width 
are as low as possible. Within one transmission stage the normal 
module and tooth width are determined by the weakest gear-
ing in terms of the load-carrying capacity. The load factors are 
assumed to have a default value of 1.0. The mesh load factor Kγ 

that accounts for the uneven distribution of load among meshes 
for planetary gear transmission must be applied to all gears. The 
corresponding value of the mesh load factor is given in AGMA 
6123–B06 (Ref. 6), according to the number of applied planets 
and assuming ISO quality six.

Determining efficiency, volume and weight. After calculating 
the load-carrying capacity of each gear pair for one transmission 

Figure 3  Conventional and low-loss external gear (mn = 2; z = 35).

Figure 4  Low-loss gearing for Concept A with (green) transverse path of 
contact (i = 5; HV = 0.038).

Table 2  Design parameters at a glance
Parameter Default Value Unit

zmin 17 -
Tin 300 Nm
nin 1500 rpm
Δimax ±10 %
SF,min 1.7 -
SH ,min 1.3 -

KA, Kv,KHα, KHβ 1.0 -
Kγ acc. to [6] -
εα 1.1 -
αn 20° -
β 0° -

b/d @ gear with zmin 1 -
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concept, all of the geometric parameters that affect efficiency and 
volume are determined, after which the efficiency of each gear 
pair with pinion × and wheel y can be calculated according to:

(17)
ηxy = 1 – (HV,xy · μm,xy)

In the next step, the single efficiency values of each gear pair 
can be combined into the basic train efficiency for Concepts A, 
B and C η12,A,B,C that represents the corresponding transmission 
efficiency between central shafts 1 and 2 with a fixed carrier 
shaft:

(18)
η12,A = η1,p1 · ηp1,2 (19)

η12,B(C) = η1,p1 · ηp2,2

By converting the basic train efficiency, the overall transmis-
sion efficiency for each concept can be achieved according to 
Mueller (Ref. 1), equivalent to the efficiency between input and 
output shafts. For Concept A the corresponding efficiency is 
calculated between input shaft 1 (sun gear) and carrier shaft s:

(20)

ηA = η1s =
i12,A · η12,A – 1 

i12,A – 1

For Concepts B and C, the overall efficiency between the 
input shaft s (carrier shaft) and shaft 1 can be calculated with:

(21)

ηB(C) = ηs1 =
i12,B(C) – 1 

i12,B(C) · η12,B(C) – 1

For the sake of simplicity, only the gear wheels and both sides 
of the carrier plate are considered in calculating the weight of 
each concept. The weight of further transmission components 
such as bearings, shafts and other machine elements will not be 
considered. The weight of an external gear (sun or planet gear) 
is approximated with the volume of a solid cylinder having the 
same reference diameter and face width as the corresponding 
gear. With the density of steel ρsteel, the weight for an external 
gear × then reads:

(22)

mx = Vx · ρsteel =
d2

x π · bx · ρsteel4

For an internal gear y (ring gears), an equivalent hollow cyl-
inder is assumed for the volume, with the reference diameter of 
the internal gear as the inner diameter and the reference diam-
eter plus six times the normal module as the outer diameter:

(23)

my = Vy · ρsteel =
(dy + 6 · mn)2 – d2

y π · by · ρsteel4

The weight of both carrier plates can be estimated using two 
times the weight of a solid cylinder with the center distance 
of the gearing as radius and a width 0.2 times the maximum 
occurrent face width bmax: (24)

my = Vy · ρsteel = 2 · a2 · π · 0.2 · bmax · ρsteel

The volume of each transmission concept is likewise approxi-
mated, using the sum of the volumes for each transmission 
stage. The volume of Concept A can be calculated using the vol-
ume of a solid cylinder with the diameter of the ring gear plus 
six times the normal module plus the volume of two-sided car-
rier plate:

(25)

VA = ( (d2 + 6 · mn)2 · b2 + 2 · a2 · 0.2 · bmax) · π4

The volume of Concept B can be calculated using the sum of 
the volumes of both ring gear cylinders and the volume of the 
two-sided carrier plate, where the cylinder width of one carrier 
plate is equal to the maximum occurent face width:

(26)

VB = ( (d1 + 6mn)2 · b2 +
(d2 + 6mn)2 · b2 + 2a2 · 0.2 · bmax) · π4 4

The volume of Concept C is determined using the volume of 
the cylinders with a diameter two times the center distance plus 
the tip diameter for each transmission stage:

(27)

VB = ((a + da,p1 )2
· b1 +(a + da,p2 )2

· b2 + 2a2 · 0.2 · bmax) · π2 2

For reasons of comparability, all calculated volumes and 
weights are normalized using the weight and volume of Concept 
A with a gear ratio of five. The normalized volume and weight 
of a concept then reads:

(28)

V* = V
Vconcept A, i = 5

M* = m
mconcept A, i = 5

Design results for Concept A. Before the calculation of the 
load-carrying capacity can be conducted, the number of teeth 
on each gear wheel must be determined. Because the sun gear 
of this concept features the minimum carrying load, the mini-
mum number of teeth is applied to this gear wheel. The num-
ber of teeth on the ring gear can then be determined in accor-
dance with Equation 2, which yields –68. The number of teeth 
for the planet gear is 25, using the respective rounded-down 
results from Equation 3. In the next step the maximum number 
of planets must be determined with Equation 5, which yields a 
maximum of four planets. In the final step, Looman’s assembly 
rule has to be checked in order to freeze the number of teeth 
for each gear in this concept. The result of Equation 6 is not 
an integer value for this configuration; therefore it is not pos-
sible to mount four planets with the given number of teeth. In 
that case the number of teeth on the planet and ring gear must 
be increased until Equations 3 and 6 are satisfied. The resulting 
numbers of teeth are 17 for the sun gear, 27 for the planet gear 
and –71 for the ring gear. The transmission ratio for Concept 
A, then, is 5.18 so that the gear ratio deviation of 3.5% is within 

Table 3  Design results—Concept A
inominal 5 25 125 Unit

zi : zp : z2
nmax

17 : 27 : –71
4

-
-

Gearing 1:p p:2 1:p p:2 1:p p:2
μ 0.069 0.052 0.085 0.064 0.107 0.08 -

Hv 0.158 0.04 0.152 0.038 0.159 0.042 -
η 0.989 0.998 0.987 0.998 0.983 0.997 -

iact (Δi) 5.18 (3.5%) 26.8 (7.2%) 138.71 (11%) -
mn 2.15 3.75 6.5 mm
η 0.990 0.977 0.961 -

M* 1 6.3 33.9 -
V* 1 6.3 33.7 -
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the permitted range. The results of the design are summarized 
in Table 3.

Due to the limited practicable basic gear ratio in transmission 
Concept A, higher transmission ratios are not realized by vary-
ing the numbers of teeth, but by connecting two equal trans-
mission stages of Concept A (Fig. 5a), each characterized by a 
nominal transmission ratio of five. Therefore the carrier shaft 
of the first stage is connected to the input shaft (sun gear) of the 
second stage. The resulting overall nominal gear ratio is then 
52 = 25, and likewise, 53= 125 for Concept A, with a nominal 
transmission gear ratio of 125 (Fig. 5b). The weight and volume 
for Concept A with the gear ratio of 25 is calculated by add-
ing the weight and volume values of each transmission stage (as 
with Concept A with a gear ratio of 125).

Design results for Concept B. Solving Equation 12 with the 
desired basic gear ratio of i12,B = 0.8 and the corresponding value 
for cos α according to Equation 9, which is dependent on the 
number of applied planet gears, yields the number of teeth on 
planet gear p2. Likewise, Equations 7 and 8 provide the number 
of teeth on the two ring gears. The resulting numbers of teeth are 
mainly dependent on the desired number of planets. Especially 
for Concept B, which features no sun gear, two versions are con-
ceivable, in principle. These differ in terms of the applied number 
of planets—one with only three planets (Concept B3) and one 
with five planets (Concept B5). Concept B3 has lower numbers 
of teeth for the ring gears as well as a lower mesh load factor Kγ, 
but features a higher normal module and tooth width due to the 
fact that only three planet meshes are transferring the power to 
the ring gears, in comparison to the five meshes in Concept B5. 
The design, according to AGMA 6123, shows which of the con-
cepts achieves the optimum weight, volume and efficiency; results 
of the design are summarized in Tables 4 and 5. It must be men-
tioned that for both versions of Concept B, and all desired gear 
ratios, it is not possible to apply the theoretical number of teeth 
resulting from Equation 12 because Looman’s assembly rule (Eq. 
13) is not fulfilled. The number of teeth must be increased for 
both ring gears until Equations 13 and 8 are satisfied, as well as 
complying with the maximum pre-set gear ratio deviation. In 
particular, it is even not possible for both versions of Concept B 
with a gear ratio of 125 to satisfy Equation 8, where the numbers 
of teeth and the gear ratio deviation remain small; either the gear 
ratio deviation or the number of teeth on the ring gears is too 
high. Not satisfying Equation 8 results in a different center dis-
tance between gear pairs 1:p1 and 2:p2. In order to find a buildable 
transmission, a compromise between a preferably small number 
of teeth (to keep dimensions low) and a small gear ratio devia-
tion must be found, where the deviation of the center distances 
for both gearings has to be as small as possible. The deviation of 
the center distances (Eq. 8) can then be compensated by applying 
appropriate addendum modifications for the pinion and wheel of 
a gearing. However, the tooth-load factor then reaches higher val-
ues because the transverse load factor cannot be reduced to the 
desired value of 1.1. Consequently, low-loss gearing (Fig. 4) can-
not be achieved due to the constraint of equal normal modules 
for each gearing.

Design results for Concept C. As with Concept B, Equation 14 
provides the number of teeth for Concept C. Because Looman’s 
assembly rule (Eq. 13) is not satisfied, the number of teeth in 

Figure 5  Concept A with gear ratio 25 and 125.

Table 4  Design results—Concept B3
inominal 5 25 125 Unit
nmax 3 -

z1 : zp1 –50 : 17 –50 : 17 –40 : 17 -
z2 : zp2 –57 : 24 –51 : 18 –42 : 18

Gearing 1 : p1 p2 : 2 1 : p1 p2 : 2 1 : p1 p2 : 2
μ 0.054 0.047 0.048 0.047 0.44 0.05 -

Hv 0.062 0.04 0.066 0.062 0.057 0.062 -
η 0.997 0.998 0.997 0.997 0.998 0.997 -

iact (Δi ) 5.19 (3.9%) 27.3 (9.1%) 120.0 (4.0%) -
mn 2.2 3.7 6.6 mm
η 0.980 0.862 0.60

M* 0.76 3.59 17.46 -
V* 0.96 4.95 18.41 -

Table 5  Design results–Concept B5
inominal 5 25 125 Unit
nmax 5 -

z1 : zp1 –62 : 17 –57 : 17 –61 : 17 -
z2 : zp2 –68 : 23 –58 : 18 –64 : 18 -

Gearing 1 : p1 p2 : 2 1 : p1 p2 : 2 1 : p1 p2 : 2
μ 0.053 0.048 0.044 0.044 0.44 0.049 -

Hv 0.069 0.05 0.067 0.062 0.074 0.083 -
η 0.996 0.998 0.997 0.997 0.997 0.996 -

iactual (Δi ) 5.28 (5.6%) 25.7 (2.6%) 109.8 (12.1%) -
mn 2 3.5 5.2 mm
η 0.975 0.877 0.557

M* 0.75 4.10 15.71
V* 0.96 5.06 20.37
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sun gears 1 and 2 must be increased. Likewise, it is not possible 
to find admissible numbers of teeth for gear ratios 25 and 125 
that satisfy both the assembling rule (Eq. 13) and the center dis-
tance constraint (Eq. 8), where the gear ratio deviation is within 
the permissible range. Therefore, appropriate addendum modi-
fications of the pinion and wheel have to be applied to achieve 
the same center distances for both gearings.

Comparison of the Transmission Concepts
In terms of efficiency, Concept A takes advantage of the con-
sistently higher epicylic transmission efficiency η1s in compari-
son to the basic transmission efficiency η12 (Ref. 1). Even for 
the concepts with higher gear ratios, Concept A features obvi-
ously the best efficiency values for all examined transmission 
concepts. Concepts B and C are characterized by a high mesh-
ing power (Pmesh = T · (n – ns)) in relation to their input power, 
which results in high power losses. Comparing Concepts B and 
C shows that Concept C features lower efficiency values for 
all gear ratios. The deviation is primarily the result of differ-
ent tooth-load factors HV for each gear pair. Generally, internal 
gears feature lower load-dependent power losses due to lower 
sliding velocities in the loaded gear mesh; so Concept B, with 
two internal gear pairs, achieves higher efficiency values for 
every gear ratio. Furthermore, the applied addendum modifica-
tions to Concept C could not be varied in any way that would 
be the optimum to achieve low tooth-load factors, but had to be 
chosen in order to reach the same center distances for both gear 
pairs.

Generally, the results for weight and volume show propor-
tional behavior over the gear ratio. All of the concepts feature 
approximately the same weight for gear ratio 5. Concept B3 is 
even lighter than Concept A—although three planets are applied 
to Concept B3 in comparison to four planets applied to Concept 
A—and the tooth widths for the gears of Concept B3 are higher. 
This is due to the lower center distance, which has a quadratic 
influence on volume and weight. For higher gear ratios, Concept 
A considerably exceeds the weight of Concept B due to the 
increasing number of transmission components by connecting 
two/three basic transmission stages. Concept C yields by a sig-
nificant margin the highest volume and weight for gear ratios 25 
and 125, caused by the highest normal module and center dis-
tance of all concepts.

Conclusion
The appropriate transmission Concepts A, B or C for a speci-
fied application depend on the desired transmission gear ratio. 
For a desired gear ratio of five, transmission Concepts A and 
B feature similar values for weight and volume. For gear ratios 
i = 25 and i = 125, two or three basic transmissions of Concept 
A (Figs. 5a and 5b) must be applied, whereas Concepts B and 
C do not change the basic structure for all gear ratios (Figs. 1b 
and 1c). Concept A provides the highest efficiency value and a 
very narrow design. If a gearbox with a low diameter is required, 
Concept B achieves the best weight and volume values, while 
the number of applied planets has a minor influence. A higher 
number of applied planet gears results in a higher mesh load 
factor, according to AGMA 6123–B06, as well as an increasing 
difficulty in assembling the planets according to Looman with 

Table 6  Design results—Concept C
inominal 5 25 125 Unit
nmax 5 -

z1 : zp1 23 : 17 52 : 17 39 : 17 -
z2 : zp2 21 : 19 53 : 18 41 : 18 -

Gearing 1 : p1 p2 : 2 1 : p1 p2 : 2 1 : p1 p2 : 2
μ 0.059 0.059 0.047 0.049 0.045 0.05

Hv 0.163 0.159 0.124 0.126 0.145 0.162
η 0.990 0.990 0.994 0.994 0.994 0.992 -

iactual (Δi ) 5.46 (9.3%) 26.74 (7.0%) 140.4 (12.3%) -
mn 3.5 4.0 7.5 mm
η 0.922 0.765 0.330

M* 3.2 13.3 67.6
V* 3.7 15.6 78.9

Figure 6  Concept B.

Figure 7  Efficiency of conventional and low-loss external gear.
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low numbers of teeth. Thus the number of teeth for the central 
gears is increased in order to compensate for the advantage of 
a better power division for higher numbers of applied planets. 
Only for high gear qualities where the mesh load factor drops 
significantly could Concept B, with its high number of planets 
and a reduced center distance, also be used for gear ratios high-
er than five. Concept C is characterized by the highest normal 
modules and center distances, and it features the lowest effi-
ciency due to very high tooth-load factors. This is why using 
Concept C is not recommended for high gear ratios. As already 
mentioned, it is increasingly difficult for high gear ratios and a 
high number of planets to comply with all of the geometric con-
straints, such as ensuring the assembling of the planets accord-
ing to Looman, not exceeding a given maximum gear ratio devi-
ation, and ensuring the same center distances of each gear pair. 
The center distance constraint is increasingly difficult to satisfy 
for the given requirements and low number of teeth. Therefore 
a difference in the center distances of two gear pairs is offset by 
applying addendum modifications for transmission concepts 
with high gear ratios. In that case the addendum modifications 
cannot be applied in the best way to reduce the tooth-load fac-
tors, or, in other words, to increase efficiency. One possibility in 
order to achieve equal center distances would be to use differ-
ent normal modules for each transmission stage. The addendum 
modifications can then be chosen so that the tooth-load factor 
of each gear pair reaches a minimum. 
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