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Introduction
Grinding is a high-performance machining process typically applied at the end of a manufacturing process chain, due to its 
ability to meet surface quality and workpiece integrity requirements. In gear manufacturing, generating gear grinding is a high-
productivity variation of the grinding process. The high productivity results from the continuous process, where the workpiece 
is machined with a worm-shaped grinding tool. Due to its abrasive characteristics and the resulting high degree of material 
deformation, this process requires a large energy amount of energy input per volume of material removed (Ref. 23).

The energy generated during the grinding process can be categorized into thermal and mechanical energy. While the 
mechanical loads in the contact zone during the grinding process have a direct influence on the residual stress state of 
the workpiece surface, the thermal loads account for most of the generated energy. Thermal energy can be dissipated to 
either the chip, the environment, the cutting oil or the workpiece, which brings the risk of compromising the surface integrity 
through the occurrence of grinding burn. The extent to which process parameters can be manipulated without causing 
part damage is not entirely understood. This constraint not only limits the productivity of the process but also often makes 
it rather iterative, as the surface characteristics must be tested to assess whether the selected parameters are appropriate. 
Currently, suitable process parameters are defined by time-consuming trials or based on the operator’s experience.

To guarantee an adequate surface integrity outcome in the parts finished by grinding, several energy characterization mod-
els have been developed for the calculation of energy and heat characteristics in the contact zone during grinding (Refs. 
11, 14, 21). However, their direct application into generating gear grinding is often not viable, due to the complex contact 
conditions of the process derived from its intricate kinematics. More recent models are also able to describe the energy 
generation in the contact zone during generating gear grinding (Refs. 12, 19). The calculation of energy through such mod-
els offers a viable approach to understanding the energy generation in the contact zone, although it does not provide a 
means of directly accessing the influences of the energy on the process itself.

The fundamental relationships between energy and power in terms of machining processes indicate power as a relevant 
parameter for energy assessment. Power is a measure that can be assessed in real-time as a time-domain signal data 
extracted from the control of the grinding machine (Ref. 3). Moreover, the recording of spindle power signals during the 
process is a commonly found feature among modern grinding machines, allowing for in-process monitoring, without the 
necessity of installation of additional sensors. Thus, examining the relationships between the calculated process energy and 
the power signals on the spindles of the grinding machine may enable an indirect assessment of the heat in the contact 
zone, without the need for interactive evaluations. The approach developed in this research aims to aid a further under-
standing of the correlations between the energy generated during material removal and the power signals from the machine 
control during generating gear grinding. The approach is based on the development of a methodology for the investigation 
of correlations between machine spindle power signals and the calculated process energy in the contact zone, during the 
contact between tool and workpiece in generating gear grinding.
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Nomenclature
dCor [-] Distance correlation
Ft N Tangential force
F⃗ N Force vector
Mi [-] Mutual information
p(X) [-] Marginal probability of X (energy 

variable)
p(X,Y) [-] Joint probability function of X and Y
p(Y) [-] Marginal probability of Y (power 

variable)
Pc W Cutting power
Pp W Process power
Ps,i W Spindle idle power
Ps,t W Spindle total power
R [-] Ranks of X (energy variable)
r [-] Pearson coefficient
rs [-] Spearman’s rank correlation 

coefficient
S [-] Ranks of Y (power variable)
v⃗ m/s Speed vector
vc m/s Cutting speed
X [-] Energy variable
Y [-] Power variable

State of the Art
Despite the challenges posed by a complete understanding of 
the energy generation during generating gear grinding, both 
analytical and empirical models can provide a quantification of 
this metric. The energy generated in the contact zone can be cor-
related to the power in the spindle (Ref. 12), which in turn, can 
be measured by analyzing machine signals. However, since this 
relationship is not inherently straightforward, a detailed study of 
both power signals and energy is required to identify effective 
correlations. Therefore, within this chapter the current state of the 
art on both of those concepts is reviewed, focusing on method-
ologies for energy calculation and signal analysis in gear grinding. 
By investigating existing approaches and technologies, a founda-
tion can be established for proposing a method to analyze cor-
relations between energy consumption and power signal charac-
teristics during generating gear grinding.

Energy in Generating Gear Grinding
As an abrasive process, the energy required in the grinding pro-
cess is higher than in machining processes with a defined cut-
ting edge (Ref. 20). This effect is derived from the large amount 
of material deformation that occurs during the cut, from the 
material that is removed and the one that remains in the work-
piece, as well as the friction between the work-piece surface 
and the grains in the grinding wheel (Ref. 20). The total energy 
required to machine parts during grinding can be understood as 
a sum of process, machine and background energy (Ref. 11). The 
machine and background energies correspond to the share that 
is required for the machine to operate (hydraulics, cooling sys-
tem, lighting, etc.). Meanwhile, the process energy corresponds 
to the share that is actively employed for material removal. For 

grinding, the process energy averages up to 20 % of the total 
required energy and is typically considered to be equivalent to 
spindle energy (Ref. 1).

The understanding of the energy involved in machining pro-
cesses is often approached by a correlation with machine power, 
based on the principle that power is the rate at which work is 
done or energy is converted. Therefore, in cutting processes, 
energy is defined as the product of the distance to be traveled 
(cutting length) and the components of the resulting force act-
ing in its direction, while power is defined as the product of 
the speed components and the resulting force acting in their 
direction (Ref. 9). These relations are useful in manufacturing 
since they allow for a more direct comprehension of the energy 
in terms of process parameters. In grinding, this association is 
given by Equation 1, in which the cutting power Pc is direction-
ally proportional to the tangential force Ft. The cutting power is 
a share of the aforementioned process power (Equation 2) and, 
therefore, cannot be directly compared to the power which is 
observed in the machine spindle (Ref. 8). Nevertheless, the asso-
ciation between those is possible through Equation 3, in which 
the process power Pp is defined as the spindle total power, sub-
tracted by the idle power on the spindle—the power which is 
necessary for the sole rotation of the spindle, without contact 
between tool and workpiece (Ref. 11).

P F vc t c:=

(1)

pP vF:=
(2)

P P P, ,p s t s i= -

(3)

Fundamentally, power can be understood as the rate of 
energy consumption. In terms of the grinding process, essen-
tially up to 60–90 percent of the process energy can be con-
verted into heat into the workpiece, depending on factors such 
as process conditions, grain and wheel bonding type (Ref. 11). 
This conversion effect leads to a recurring issue during grind-
ing processes, the incidence of grinding burn, characterized 
as thermal damage in the workpiece surface. This incidence 
may lead to metallurgical phase transformations, temper-
ing and possible rehardening of the surface layer (Ref. 15), 
as well as induction of residual stresses, which affects the 
fatigue strength of the material (Ref. 10). Since thermal dam-
age like grinding burn concerns a wide combination of effects 
and intensities, it cannot be detected throughout the process 
immediately, but rather through tests and examinations car-
ried out on the finished part. According to Malkin, the thresh-
old temperature for the occurrence of grinding burn could be 
determined in terms of critical specific energy, which requires 
the definition of empirical coefficients based on the material 
pair (Ref. 15). Those findings indicate that there are means 
for in-process identification and control of thermal damage. 
Previously, Rowe also developed a model for predicting grind-
ing burn threshold, based on the heat flux observed in the 
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process, considering the energy partitioning between tool and 
workpiece (Ref. 21).

The detection of such thermal defects is further compli-
cated due to the abrasive characteristics of the grinding pro-
cess. Since the material removal is performed by grains with 
an undefined cutting edge, the heat generation in the contact 
zone cannot be directly assessed. For this reason, many models 
have been developed to estimate both the energy and heat in 
the process during grinding. For the case of generating gear 
grinding, this modeling is further hindered by the complex 
kinematic characteristics of the process, which leads to dif-
ferent contact conditions at each instant of the process (Ref. 
22). Reimann developed a thermomechanical energy descrip-
tion model for generating gear grinding, in which the spe-
cific grinding energy is calculated based on parameters such 
as the cutting force, cutting speed, contact time, and contact 
zone area in the process, which are determined both analyti-
cally and empirically (Ref. 19). The model has been param-
eterized utilizing an analogy trial replicating the effects of 
the contact between tool and workpiece at one specific point 
of the gear flank and validated by the inspection of the pres-
ence of grinding burn (Ref. 19). Although the model provides 
a good description of the heat flux at one specific point by this 
approach, its application in different test cases is challenging 
due to its reliance on empirical factors from temperature and 
force measurements during trials. Furthermore, Linke devel-
oped a model to describe the energy in conventional grind-
ing based on the stages of chip formation—friction, plowing 
and shearing, with a single-grain engagement approach (Ref. 
11). The implementation of consideration of contact length in 
the model makes it more comprehensive to different process 
kinematics. However, it is not directly applicable to generat-
ing gear grinding, as well as it does not consider the influence 
of different grain sizes or geometries, nor the influence of the 
simultaneous engagement of multiple grains. Although both 
models can estimate the heat and energy in the contact zone, 
they either do not fully consider factors that are also relevant 

to the process or are not directly applicable to generating gear 
grinding. Considering this, Löhrer combined the findings of 
both models into an approach that considers the influence of 
the grinding wheel topography on the energy distribution at 
the flank during generating gear grinding (Ref. 12).

In the model developed by Löhrer, the energy calculation is 
done through the generating gear grinding simulation with the 
software GearGRIND (Ref. 12). With user input of the tool 
topography, process parameters and workpiece properties, the 
software can apply the process kinematics to obtain the gener-
ated energy. This is achieved utilizing a penetration calculation 
in which the workpiece and tool movements are discretized in 
cutting planes, to later be positioned with each other. Due to 
the process-specific kinematics, the tool profile penetrates the 
workpiece, as the cutting planes of the tool body are projected 
into those of the workpiece. If there is an overlap, the com-
mon cutting surface is then determined and removed (Ref. 7). 
For the original simulation of the contact, neither the grind-
ing worm nor the gear rotated, but rather the gear was fixed in 
space while the tool followed a trochoidal motion, representing 
a combination of the gear and the tool motion which occurs 
in the actual process. For the energy calculation developed by 
Löhrer, in addition to the original approach, the topography 
curves of the grinding worm are also projected into each tool 
profile (Ref. 12). Subsequently, the rotational motion of the 
worm is implemented by changing the position of each tool 
profile during the trochoidal motion, which allows it to accu-
rately represent the contact between the grains and workpiece 
surface through the rotational motion of the tool. Based on 
this foundation, the microinteraction characteristics of contact 
length lc, grain cross-section area Acu and grain penetration 
depth hcu are calculated, as illustrated in the left side of Figure 
1. In the schematic, the engagement path of a grain is repre-
sented by a line passing through the macro contact geometry. 
Through the simulation, the contact characteristics are calcu-
lated along the entire engagement for all the grains in contact, 
in the entire gear grinding process (Ref. 12). Thereby, it is 

Figure 1—Approach for Process Energy calculation by Löhrer (Ref. 12).

GEAR TECHNOLOGY | September/October 2024 geartechnology.com42

http://geartechnology.com


possible to calculate the friction Efr, plowing Epl and shearing 
energy Esh, and with that the process energy Ew, by using the 
equations described in the right side of Figure 1.

Signal Analysis in Grinding Processes
In grinding, material removal takes place through the engage-
ment of grinding wheel grains with the workpiece, resulting in 
a contact zone significantly smaller than in defined cutting-
edge processes like milling or turning (Ref. 2). Therefore, the 
assessment of process parameters using conventional measuring 
techniques is often not possible, due to the difficulty of access-
ing the actual contact area. These difficulties underlie the efforts 
which have been made to apply indirect monitoring methods 
to the grinding process through signal analysis, as a means of 
capturing and interpreting the dynamic behavior observed in 
the process. This chapter provides an overview of signal analysis, 
initially in the context of overall manufacturing processes, as 
well as specifically in grinding processes.

Within machining processes with a defined cutting edge, 
Tool Condition Monitoring (TCM) is a common application 
for signal analysis. For the process of gear hobbing, Hendricks 
investigated the suitability of using acceleration sensors for 
predicting component quality regarding tool wear (Ref. 6). 
The goal of the approach was to derive measures for increas-
ing the process stability from the signal data. The evaluation 
of characteristic values extracted from the time and frequency 
spectrum of the signal allowed the recognition of patterns 
between acceleration signals and geometric quality deviations 
in the hobbed parts. For the process of milling, Drouillet also 
investigated tool life predictions by studying the spindle power 
signals of the process (Ref. 5). In this approach, the Root 
Mean Square (RMS) values of the signals in the time domain 
are evaluated by a neural network to predict the Remaining 
Useful Life (RUL) of the tool, presenting a strong correlation 
between the predicted and true values of the RUL.

In abrasive processes such as grinding, the stochastic charac-
teristics of the contact between the grains of undefined geom-
etry and the surface of the workpiece bring further complexity 
into such investigations. Pandiyan conducted a comprehensive 
review regarding monitoring of abrasive finishing process by 
using artificial intelligence. The review indicated that AE 
(Acoustic Emission) sensors are the most commonly employed 
for abrasive processes, due to their sensitivity in the high-
frequency range, where most of the microcutting components 
are dominant (Ref. 17). Further analysis revealed that grinding 
burn, wheel conditioning and shatter vibration are common 
topics to be predicted when monitoring grinding processes 
(Ref. 17). Additionally, Mirifar developed an approach for pre-
diction of forces and surface roughness in grinding, through 
the analysis of AE sensors integrated into the grinding tool 
(Ref. 16). In the approach, the signals were initially pre-pro-
cessed, amplified and de-noised, and the peak values were used 
as input in feedforward neural network, which was able to pre-
dict the arithmetic mean roughness Ra and normal grinding 
forces FN with an accuracy of 99 percent (Ref. 16).

To indirectly assess the process energy during generat-
ing grinding, the physical relationships between energy and 
power indicate the evaluation of power signals as a promising 

approach. On industrial grinding machines, the recording of 
time-domain power signals of the machine spindles is a com-
monly incorporated factory feature. Therefore, the evaluation 
of such signals also brings the advantage of not requiring the 
installation of external sensors such as accelerometers or AE 
sensors, with which the achievement of sensible results is 
dependent on the sensor positioning and distance to the work-
piece (Ref. 17), hence, possibly leading to incorrect readings.

Objective and Approach
As described in the previous chapters, the understanding of the 
relationships between energy in the contact zone and spindle 
power signals in generating gear grinding shows potential for 
optimizing process parametrization. In that sense, the objec-
tive of this report is to develop a method for investigation of 
the correlations between process signal and calculated process 
energy in generating gear grinding, see Figure 2.

To achieve the proposed objective, the approach is divided 
into four phases. In phase 1, experimental trials are conducted 
for generating gear grinding of a pinion shaft, to gather the 
machine power signals. Those signals are then treated and ana-
lyzed in phase 2, where the main characteristic values which 
define the process are extracted, to be later compared with the 
process energy. This calculation will be performed based on the 
model of Löhrer (Ref.12) through the software GearGRIND. 
The model is described in phase 3. Finally, in phase 4, a method 
to investigate the correlations between the power signals and 
process energy gathered in the previous phases is developed.

Experimental Methodology
In the trials carried out for this study, generating gear grind-
ing was applied to finish case-hardened pinion shafts made 
of 16MnCr(S)5, designed for use in transmission systems of 
electrical vehicles. The trials were performed as a part of the 
Incubator Technology Chain project, in which product, process 
and quality were acquired for the entire manufacturing chain of 
the pinion shafts. Before the generating gear grinding trials, the 
pinion shafts were prepared by a hobbing process with varying 
parameters. The variation of parameters during the gear prepa-
ration influences the initial geometry in the grinding process, 
and therefore, is presented in this chapter.

Experimental Setup
The grinding trials were performed on a Klingelnberg VIPER 500 
KW grinding machine. The pinion shaft was centered and clamped 
between tips, as shown in Figure 3. During the process, the actual 
value of current in axes B (workpiece rotation), C (grinding worm 
rotation), X, Y and Z (grinding worm translation) was recorded. 
Because current and power are directly related if the voltage is con-
stant, and the detectable power signal of the grinding spindle has 
a lower resolution than the current signal, the spindle current has 
been measured. The signals were recorded throughout the entire 
grinding process of each pinion shaft at a sampling rate of fs = 60 
Hz. As a tool, a ceramic bonded grinding worm manufactured by 
Krebs & Riedel was used, with characteristics shown at the bottom 
left of Figure 3. To prepare the grinding worm for the grinding 
process, its dressing was performed using a diamond disk dresser.
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Design of Experiments
The design of the experiments is shown in Figure 4. As pre-
viously mentioned, before grinding the gears are prepared by 
a gear hobbing process (shown on the left side of Figure 4). 
The energy calculation detailed in this research only takes the 
grinding process into account, however, the grinding stock in 
the first pass is defined by the parameters used during the gear 
preparation. Therefore, the variation of the parameters in this 
stage must also be considered. For both the gear preparation 
and the grinding, a reference and a productive parameter set 
were applied. For the gear preparation, the cutting speed vc was 
kept constant between both variations, while the feed was var-
ied between fa = 1.5 / 2.0 mm, and fa =3.0 / 4.0 mm.

During grinding, material removal was performed 
through a five-stroke strategy, which divided the total 

grinding stock into five cuts, aiming to reduce the risk 
of grinding burn in the final part. The first three strokes 
concern the roughing operation, while the finishing is per-
formed in the next two, each with different parameters. 
Generally, the first stroke acts as an equalization pass, in 
which there may not be full contact between the tool and 
the workpiece, to level the surface. With the model consid-
ered in this research, the energy of each stroke is calculated 
separately, therefore, each stroke can be considered as a dif-
ferent input for the energy calculation. Across the grind-
ing process, the cutting speed vc, infeed DS and axial feed 
fa were varied as shown in the center and left of Figure 4. 
While the cutting speed varies between the reference and 
productive variations, the infeed and axial feed are varied 
between the roughing and finishing steps.

Figure 2—Objective and approach of the research.

Figure 3—Experimental setup. grinding
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Treatment of Process Signals in 
Generating Gear Grinding

After the execution of the trials, the next step of the approach 
is evaluating the acquired signals, to extract from them charac-
teristic values which can be compared to the process energy. For 
that evaluation to occur, the signals from the entire process must 
first be evaluated in terms of the process strategy, to understand 
which sections of the signals are relevant for the analysis.

The raw signals obtained from the trials contain valuable infor-
mation about the process, however, evaluating them directly pres-
ents challenges. Initially, the large amount of data not only makes 
the evaluation complex but also poses limitations in terms of stor-
age and processing. Additionally, the entire signal contains regions 
that are not representative of the process, when there is effective 
contact between the tool and workpiece. Therefore, to facilitate 
the recognition of patterns in the signal, it is first necessary to 
extract values that can be associated with the energy.

The actual values of current in the entire process were 
extracted from the machine control. The first step to evalu-
ate these results in terms of energy is to convert the mea-
sured current into power, given its relationship to the volt-
age. The result of this conversion for all the C-axis (tool 
rotation) and X-axis (tool radial translation) is shown in 
Figure 5. On the left side of the figure, the signals for the 
X- and C-axis are compared. On the signal recorded from 
the X-axis, the presence of peaks at the points where con-
tact starts on each stroke could be identified. Those peaks 
were then taken as a reference for the distinction of the 
beginning of each stroke, as shown by the vertical dashed 
lines. The end of the interval of each stroke, however, was 
taken as the moment when the value of the beginning of 
the stroke was reached again (not depicted in the diagram). 
As a result, each stroke was then distinguishable as shown 
to the right of Figure 5.

Figure 4—Design of experiments.

Figure 5—Identification of the stroke intervals in the tool spindle signals.
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Typically, signal processing requires applying a filtering pro-
cess to extract realistic values from the signals. However, the 
power signals during the trials were acquired at a frequency 
rate of fs = 60 Hz, significantly lower than common frequency 
rates in data acquisition (typically 60 kHz to 1 MHz for AE 
sensors, for example). Therefore, a further reduction of the sig-
nal is not necessary.

With the signal pre-processed by identifying the regions 
containing different strokes, it was then possible to character-
ize the signal by extracting time-domain characteristic val-
ues. For this approach, Maximum (Max), Minimum (Min), 
Median (med), Mean, Peak to Peak (P2P), RMS, Kurtosis 
(Kurt), K4, Skewness (Skew), Variance (Var) and Krest factor 
(Krest) were calculated for future comparison to the calcu-
lated energy. In the center of Figure 6, a visual representation 
of a few of the characteristic values for the first stroke of eight 
repetition trials with the reference parameters of grinding is 
displayed. In this case, the stroke occurred in the time interval 
between 36 and 48 seconds from the beginning of the pro-
cess. Through the plot to the right of Figure 6, it is possible to 
see the scatter between the calculated values, which indicates 
the reliability of the current measurements and suggests a 
viable source of data for further comparison with the gener-
ated energy during the process. Therefore, the extracted values 
can be used as input for the investigation of correlations with 
the generated energy during the process. Each of those values 
was then calculated for every stroke, and each of the parameter 
sets described in the section “Experimental Methodology” to 
later be used as an input in the approach developed in the sec-
tion “Development of an Approach for Investigation of the 
Correlation Between Process Signal Data and Process Energy.”

Description of Process Energy 
Calculation Model

With the power signals for the machine’s main spindles evalu-
ated and characterized in the previous section, the next step of 

the approach is the calculation of the process energy in each 
setup of the design of experiments. As mentioned in the pre-
vious chapters, this research is based on the model developed 
by Löhrer, which allows the calculation of the energy over 
each contact point between tool and workpiece, in one axial 
position of the gear gap. The model is developed utilizing a 
penetration calculation considering measurements of the tool 
topography. The application of the model is summarized on 
the left of Figure 7.

For applying the model for the process investigated in this 
approach, the first step is to characterize the grinding worm 
in terms of its tool topography. For this purpose, the topogra-
phy of the grinding worm is measured using a laser scanning 
microscope Keyence VKX-1000, following the same approach 
detailed by Löhrer (Ref. 12). Hence, a fraction of the worm 
with a large enough size to provide a representative description 
of the topography—in terms of grain size and distribution—is 
scanned by the microscope. The resulting measurement is then 
evaluated using the software MountainsMap, to extract several 
two-dimensional curves, contained in a plane parallel to the 
tool surface. To extract curves that may be accurately incorpo-
rated into the tool profiles that represent the grinding worm in 
the simulation, each curve must be parallel to and equidistant 
from the others.

On the right side of Figure 7, it is possible to see the results 
which were achieved by Löhrer when applying the model to 
the generating gear grinding of a 20MnCr5 gear, with the 
properties and parameters displayed to the right of the fig-
ure (Ref. 13). With these parameters, the influence of cut-
ting speed and axial feed on the process energy per area Ew’ 
(shown in lightest color) was investigated. The results are 
also compared to those obtained with the empirical model of 
Reimann (Shown in the darkest color), and for this reason, 
this analysis is limited to one point on the gear pitch circle, as 
defined in the analogy trials developed by Reimann (Ref. 19). 
Within both results, it is possible to see a direct relationship 

Figure 6—Approach for evaluation of power signals in the tool spindle axis.
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between axial feed fa and energy, although no relevant effect 
can be seen by the variation of cutting speed vc. According to 
Löhrer, this behavior likely comes from the fact that the vc is 
not considered for the construction of the macromovements 
in the simulation with GearGRIND, and consequently, it is not 
considered for the calculation of the microinteraction char-
acteristics (Ref. 12). Physically, this can also be explained by 
the fact that, although cutting forces increase with an increase 
of the cutting speed, and thus the process power consump-
tion, the contact time also decreases, which may become too 
short to dissipate the power into the generated energy Ew (Ref. 
13). Therefore, in a further analysis of the energy considering 
process signals, similar behavior can be expected, considering 
that the power is directly correlated to both the forces and the 
speeds in the process, through Equation 1 and Equation 2.

Besides the calculation of the generated energy, a particular 
characteristic of the model developed by Löhrer is the consid-
eration of the different energy shares coming from the distinct 
chip formation mechanisms (friction, plowing and shearing 
energies) (Ref. 12). Given the different interactions between 
the grains and the workpiece during each stage of material 
removal, each of these shares may represent a different effect 
on the thermal and mechanical loads of the cutting process. 
According to Malkin and an analysis performed by Löhrer, 
nearly all the friction energy Efr is conducted to the workpiece 
as heat, while the shearing energy Esh presents the lowest con-
version into heat to the workpiece of all three energy shares 
(Refs. 12, 14). Thus, if most of the generated energy Ew corre-
sponds to Esh, the majority of this energy will likely be applied 
to material removal, and not converted into heat to the work-
piece. These interactions suggest the relevance of also consid-
ering each different share of generated energy (Efr, Epl, Esh) as 
a different variable input in the approach for investigation of 
correlations between the calculated energies and characteris-
tic values extracted from the power signals, as described in the 
following chapter. Therefore, through the model developed by 

Löhrer, the process energy in terms of the energy shares must 
be calculated for each stroke, and each set of process param-
eters described in the section “Experimental Methodology.” 
The achieved results will be then considered as input for the 
approach developed in the next section.

Development of an Approach for 
Investigation of the Correlation 

Between Process Signal Data and 
Process Energy

Once the values of the generated energy in each of the grind-
ing strokes are obtained, as well as the characteristic values of the 
power signals from the respective trials, the next step is the investi-
gation of correlations between both results. As detailed in “Energy 
in Generating Gear Grinding,” in generating gear grinding, there 
is no clear analytical relationship between power signals and energy 
in terms of process parameters. Therefore, the need for an alterna-
tive approach to recognize correlations between variables obtained 
from the acquired signals and calculated energy using statisti-
cal correlation techniques arises. The approach developed in this 
research seeks to study correlations based on the steps described in 
the previous chapters, as shown in Figure 8.

In the section “Treatment of Process Signals in Generating 
Gear Grinding,” the extraction of characteristic values from 
the spindle power signals was described, as shown in the 
upper left of Figure 8. Each set of process parameters and each 
grinding stroke result in a vector of characteristic values that 
will be used in the comparison. In the section “Description 
of Process Energy Calculation Model,” the energy calcula-
tion through the model developed by Löhrer (Ref. 12) was 
described, as well as each energy share which will be evaluated 
in the comparison, as shown in the bottom left of Figure 8. 
This chapter then details the development of the approach to 
compare how the variables extracted for each grinding stroke 
through the previous steps are correlated through all the trials 
described in the section “Experimental Methodology.”

Figure 7—Application of the energy model developed by Löhrer (Ref. 13).

GEAR TECHNOLOGY | September/October 2024 47



Considering the stochastic nature of tool and workpiece 
engagement in generating gear grinding, as well as the 
insufficient understanding of the influences of power sig-
nals in the process energy Ew, it is challenging to estimate 
the nature of the correlations that are expected to be found 
with this approach. Although linear correlations are easier 
to identify, nonlinear correlations may also be present in the 
data, as well as multivariate correlations resulting from the 
combination of different variables. Therefore, an approach 
to this investigation must meet the requirements of being 
able to recognize different kinds of relationships, be flex-
ible regarding the assumptions that must be met by the data 
distribution and be prepared to consider the presence of 
outliers. Initially, this is achieved by considering a combina-
tion of different correlation coefficients in the analysis. The 
coefficients will be calculated for each combination of vari-
ables obtained by comparing the signal characteristic values 
and the calculated process energy shares. Since it is not rel-
evant to investigate the correlation between the signal char-
acteristic values among themselves, the coefficients will be 
calculated for each combination of one energy variable, and 
one power variable.

A common coefficient applied for correlation investiga-
tions is the Pearson correlation coefficient r (Equation 4) 
(Ref. 18), with which essentially the covariance between 
two variables, divided by the product of their standard 
deviations is calculated. By calculating this coefficient, a 
value ranging from r = -1 (perfect negative linear rela-
tionship) to r = +1 (perfect positive linear relationship) 
is obtained. For Pearson to be applicable, it is necessary 
that both variables are normally distributed, and the data 
is homoscedastic. Such requirements may not be met by 
all the variable combinations that are evaluated in this 
approach. As well as the fact that this coefficient is sensi-
tive to the presence of outliers, means that the evaluation 
of other coefficients is also necessary.
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When compared to Pearson, a second coefficient which is 
less sensitive to the presence of outliers, besides not requiring 
the normal distribution of the data due to its non-parametric 
nature, is the Spearman’s Rank Correlation Coefficient rs 
(Equation 5) (Ref. 18). Through the calculation of this coef-
ficient, it is possible to measure the strength and direction of a 
monotonic relationship between two variables (whether linear 
or not), through a value between rs = -1 (perfect negative lin-
ear relationship) and rs = +1 (perfect positive linear relation-
ship). The calculation is done utilizing ranking the data points 
for each variable and subsequently calculating Pearson’s corre-
lation coefficient on these ranks.
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Although both rs and r provide a useful overview on linear 
and monotonic relationships, for a most robust approach, the 
calculation of the Distance Correlation dCor (Equation 6) 
is also considered, as it applicable for complex data where 
the relationship may not be apparent. The calculation of 
dCor allows for the detection of both linear and non-linear 
relationships between two or more variables, without any 
assumptions about the distribution or dimension of the data, 
by providing a value between dCor = 0 (independence) and 
dCor = 1 (perfect dependence). This coefficient is obtained 
by calculating standardized distances between points in the 
data, and thereby determining the statistical independence of 
these distances.

Figure 8—Approach for investigation of correlations between process energy and spindle power.
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Finally, to achieve an approach that is not only based 
on coefficients from which it is possible to understand 
the strength and direction of a relationship, the Mutual 
Information Mi (Equation 7) is also included in the analysis 
(Ref. 4). The calculation of this metric allows for the quantifi-
cation of the amount of information gained about one variable 
by observing another, by effectively measuring the degree of 
mutual dependence between them. The calculation of Mutual 
Information involves the estimation of the probability distri-
butions of each variable, and their joint distribution, therefore, 
it doesn’t require any assumptions about the data distribution.
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By calculating the correlation coefficients, an evaluation 
of the relationships between the characteristic values from 
measured power signals and calculated energy can be made. 
However, for this evaluation to yield meaningful results, it is 
initially necessary to ensure that the correct assumptions about 
the data for the calculated coefficients are fulfilled. Secondly, it 
is necessary to evaluate whether the results obtained from the 
calculations are relevant to the overall analysis. To achieve that, 
the approach shown on the left of Figure 9 is developed.

In step number 1 of the procedure, a preliminary exploration 
of the variables is performed, to guarantee that the assumptions 
made for the calculation of each correlation coefficient are valid. 
In this step, the linearity, normality and homoscedasticity of the 
variables will be evaluated to validate the application of each 
coefficient. With that investigation, it is possible to understand 
which correlation coefficients can be calculated in step 2 for each 
relationship between variables. The coefficients will be calculated 

for each variable combination, yielding a different strength of 
correlation for each. To evaluate the relevance of the correlations 
between each variable combination, in step 3, the results will be 
visually inspected, as exemplified on the center and right sides of 
Figure 8. Through the heat map shown in the center, it is pos-
sible to compare the strength of correlations between each com-
bination, thus allowing us to quickly assess which combinations 
are strongly (darkest color) or weakly (white) correlated. In this 
evaluation, the combinations between the total generated energy 
Ew—as well as the energy shares Efr, Epl, and Esh—and the char-
acteristic values extracted from the power signals, will be observed. 
Subsequently, through the selection of the most strongly corre-
lated variable combinations, a visualization of the scatter plots of 
each combination allows for the identification of which kind of 
relationship (positive or negative, strong or weak, linear or nonlin-
ear) is found between them, if any. Thereby, the application of this 
method is expected to reveal underlying patterns between power 
signals and process energy in generating gear grinding, and with 
that, bring a foundation for identifying the energy generation 
through real-time measurements of spindle power signals.

Summary and Outlook
The energy generation in generating gear grinding is a critical mech-
anism in terms of the surface integrity of the parts. The assessment 
of generated energy in the process remains challenging due to the 
intricate characteristics of the process kinematics and grain engage-
ment. To provide an improved understanding of the energy gener-
ated during generating gear grinding, Löhrer developed a model that 
allows for the calculation of process energy Ew with consideration 
of the microinteraction characteristics of the grain engagement. The 
model can describe the energy generation along the entire grinding 
process (Ref. 12); however, it doesn’t provide the means for direct 
on-time assessment of the conditions within the contact zone. This 
research takes advantage of the power signal measurements obtained 
from a grinding machine during the process, to derive an approach 
for understanding the energy generation in the process utilizing a 
real-time assessment based on power signals.

Figure 9—Approach for investigation of correlations between process energy and spindle power.
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The objective of this work was to develop an approach to 
investigate the interactions between process signals and calcu-
lated process energy in generating gear grinding. To achieve 
this objective, the approach was based initially on the execution 
of experimental trials of generating gear grinding, to acquire 
the signals of machine spindle power during the process. The 
acquired signals were then analyzed considering the process 
strategy, and the relevant characteristic values were extracted 
from it, to allow a direct comparison with the calculated energy. 
Furthermore, the energy model developed by Löhrer was 
described through the simulation in the software GearGRIND. 
Thus, the process energy Ew as well as the energy shares of fric-
tion energy Efr, plowing energy Epl and shearing energy Esh were 
considered in the approach. With the analysis of power signals 
and description of the process energy, it was then possible to 
develop an approach for the investigation of correlations between 
the two by applying statistical correlation coefficients.

The next step of the research is the application of the energy 
model developed by Löhrer to the process conditions in which 
the signals were extracted. Then, through the developed cor-
relation approach, it will be possible to understand the effects 
of the calculated energy on the real-time power signals, and 
subsequently establish a connection between them. That 
understanding will allow the development of real-time process 
monitoring techniques, to assess the energy generation in gen-
erating gear grinding. With that, it will be possible to predict 
the occurrence of thermal damage without the need for itera-
tive steps during the process parametrization.
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