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In trod ucHon
Calculation 01 gear tooth flexibility is of interest for at least

two reasons: (a) It controls, at least in part, the vibratory
properties of a transmission system hence, fatigue resistance
and noise: (b) it controls load sharing in multiple tooth
contact.

Earlier works on that subject are by Walkeri] 2! and by
eber, I from the experimental and analytical point of

view, respectively. More recently, the finite element method
has been used?"" as well as a modified beam theory, nO)

The Complex Potential Method (CPNI). based on the con-
formal mapping of a tooth profile onto the half plane, is
another interesting approach in that it provides analytical ex-
pressions for. stresses and displacements. The ccuracy of the

ults thus obtained depends only on the accuracy at the
conformal transformation. Details on the CPM method can
be found elsewhere.in.H)

Calculation of tooth flexibility by the Complex Potential
Method has already been presented by Premilhat et al.,a;
However, two difficulties were pointed out in that paper,
which do not occur in stress calculations: (a) the indcter-
minacy 01 the displacements; (b) the singularity at the point
of interest, that is the teeth contact point. The first problem
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was not addressed in reference, [8, while the second was cir-
cumvented by calculating deflections on the tooth axis in-
stead of at the contact point, thus losing the effect of local
compression. The present paper is an attempt to show how
these two problems can be dealt with in order to obtain a
more accurate value of tooth flexibility at each point (If tne
line of action for a given pair of spur gears. IJt.t<liled calcula-
tions can be found in reference. (13)

Basic Displacement Equations
It has been shownC1ti that, for one tooth protruding out

of a half plane, and subjected to a concentrated normal force
W (Fig. 1), displacements 11 and "I) are given by:

(I)

where 11l (r) is the conformal mapping of the tuoth profile:

and the potentials I1lCt) and", (I) are given by:
¢'(ib~ ,
w·(ib.) (31

p a~ ¢(-ibd
+ i...t -.-.. 'f)

k-! t+,,,,. w', -I 41

Coordinates (x,y) in the a-plane are in inches,~hat is. they
correspond to a diametral pitch P = 1. For any other pitch,
one should multiply them by 11 P. The same remark applies
to the various figures of this paper.

(4)

Parameters c. tlk' ble (k "" 1. 2.... , 11) h,IVl' to be cal-
culated for each given profile. Once they ars known, one sees
that displacements Il and tI can be obtained from equation

Table 1 Conformal mapping parameters: standard A:GMA
profile 120 teeth, 20 deg)

llIi-
71--~----~~--~O~.2~4=92~4l-30~S-------------
2 0.101283187
3 0.011811730
4 0.001711074

0.435215170
0.099594373
0.020010559
0.004242494
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FIg, l·-ConFonnal mapping of a spur gear tooth.

(1), As an example, transformation parameters for a stan-
dard AGMA profile (20 teeth, 20 deg pressure angle) are given
in Table 1. Explicit formulas yielding u and v in terms of these
parameters have already been reported by Cardou and
Tordion'l!' and are much too cumbersome to be repeated
here.

However, potentials p'(r) and w(r). and thus u and u, are
defined within an arbitrary constant. Besides, the elastic
domain being semi-infinite, they are unbounded as z (or r)
tends to infinity. However, for large enough z, ¢ and 1/1 are
equivaleru to their log (r - 50) term, showing that u and
v increase very slowly. finally u and v are singular for r =
r0' that is neal' the loading point.

Indeterminacy of Displaoements
Although a minor problem from the mathematical point

of view, indeterminacy of displacements cannot be treated
lightly for practical applications. Indeed, a shift in the
dispIacements yields a corresponding increase or decrease of
the tooth flexibility. If one compares the displacements or flex-
ibility curves published by various authors, (see, for exam-
ple reference), (9) one notices that, although very similar in
shape, they appear shifted born one another; the shifts are
so large that one can get values differing by more than 100
percent for a given tooth,

The way to eliminate the arbitrary constants is to select
a. reference point and subtract its displacements from those
obtained at the point of interest with the same formulae.
Alternatively, an equivalent approach is to define a.point as
fixed in the solid. The disagreement between published
displacement curves seems to come mainly from the selec-
tion of a reference point (or of a fixed boundary).
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]t is shown in Fig. 2 how nondirnensional displacements
u and v vary along the axis of a. standard tooth under tip
loading. For example, if one takes the reference point on the
axis, at 3.4/ Pfrom the pitch circle, the displacement u at the
tip is 15,3, At 5.41 P it is 15 ..6,. and at 7.5/ P it is 15.7, a varia-
tion of less than 1 percent. Thus, it is important to select the
reference point deep enough. However, beyond a certain
depth, displacements vary very slowly. For thin rim gears,
the reference point should of course, be chosen within the
rim (and rim deformation should be taken into account
separately).

In the follow.ing study, 'the reference point .is taken on the
tooth axis at twice the tooth height under the root circle. For
a standard AGMA profile, this corresponds to a depth oJ
4.SIP from 'the root circle or 5,7SI? from the pitchcircle.

Displacements at tlle Contact Point
In 'order to obtain the flexibility of a given pair of mating

teeth,one has to obtain the displacement component of the
contact point in the direction of the line of action. However,
as mentioned earlier, equations (1) to (4) have been obtained
for a concentrated load W, which makes these equations
Singular precisely at the contact point. Three approaches may
be considered to avoid that problem:

(a) Calculate the displacements on the line of action at a
given depth under the surface. This approach has been
used in reference, (8) where the selected point is the in-

Fig . .2-Tooth axis displacements for tip loading (Standard AGMA pFofile,
20 teeth. 20 deg).
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tersection between tooth axis and line of action. By do-
ing so, one loses the local pressure displacements.

(b) Instead of a concentrated load, take a distributed one
and recalculate the potentials. This is, of 'course, the
mathematically exact approach. However, it leads to
very cumbersome calculations only to gel a correct
displacement field near the load. Moreover, these expres-
sions depend in a nonlinear fashion on the pair of mating
gears, and on the load transmitted,

(c) Utilize the point load solution and correct it near the
point of contact. ]n this approach, one considers that in
the immediate neighborhood of that point, displacements
behave in the same fashion as for a half plane under the
same type of load, either concentrated or distributed. It
is indeed possible, in this case, to, establish a relation-
ship between the two types 01 solution and apply it to
the tooth problem. This is shown in the following.

Displacements for points on the line of action, calculated
with the poin't load solution are shown in Fig. 3, for 'three
locations of the contact point. Itappears that the shape of
the curves for points near the surface are almost identical
thus showing thai the displacement gradient at those points
is independent of the shape of the solids in contact. This leads
us to the hall-plane problem,

The Hall-Plane SoIution .
Nondimensional displacement Vl'o on the axis of a normal

load W acting on a half plane is given, within a constant, by:

2(1 _ ...2)1 I. + "
'VPu :::;:\' ...(O,y) = loglyl- --

11" 211"

Now, consider aaelliptic pressure p (Fig. 4):
2W

p=--..Jb2-x1
Tb2

(5)

such that - fIb PmJ"w=_.:.....=""
2
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Fig. 3 - Displacement S of points located on the line of ction versus dept h
under the surface; point load at tip. pitch point. and fool of tooth; com-
parison. with corresponding h If-plane elution.

Using Westergaard's potentials, [5) one finds the
corresponding displacement ofa Hertz elliptical di tribution
load, within a constant, as:

21'( 1 + 1') y [J (y) 2 y]-+ - .. I.+ -. + -:- + C (8)
11" b'· b . b

Nomenclature

Qk, bk, c
b
C
E
h

conformal mapping parameters
= width of contact zone
'"'" arbitrary constant

Young's modulus
depth under the contact poin.t Ear equivalent
displacement calculation
imaginary constant I~- ..J - 1

P contact pressure
P' = diametral pitch

u,vdispla.cements in :c, y directions, respectively
VH = displacement corresponding to an elliptically

distributed load (Hertz' theory)
vp = displacement corresponding to a point load

vHo' vPo - displacements along y~axis, alt x = 0
W = normal lcad/wtdth

x,y = z-plane coordinates (diametral pitch P = 1)

:z = defines the location of any material point in the
plane z = x + iy

Zo location of contact point. in the z-plane
(3 angle between x-axis and line of action (II\!)
o - displacement of points of the line of action in

its direction
00 displacement of contact point
t location of a material point in the conformally

transformed plane t= E + ifj
k material. constant Ie = 3 - 4v
v .... Poisson's ratio

w

z,y,fJ,~
v"o

- Lames parameter po. = E/2 (1 + vI
t~plane coordinates
complex potentials
conformal mapping function, z = w(t)
complex conjugates of corresponding functions
nondlmensional displacements v = uE/Wo -
oE/W



x.

(b)

fig. 4 - Half-plane cases: (a) elliptically distributed load (b) point load.

Obviously, far enough from the boundary, solution (8)
should converge to solution (5), Thus, letting y tend to -
oe in equation (8) and comparing with equation (5) yields
the constant C:

I+v[ b I]c= -.- 2(1. - v)log - + ,f/- -
1f 2 2

(9)

Thus, in the case of the elliptic load, displacement at the
boundary point .::t = Y = 0 is obtained from equations (8)
and (9):

I+ II [ b I ]Vfj (O)=C=-- 2(l-v)log- +11--
-0 '11'!' 2 2 (to)

Typical curves YPoand YHoare represented in Fig. S..One
sees that, at certain depth Yo under the surface (Fig. 6):

VH,,(O)=Vpo (Yo)
Letting h = Iyo II, this relation yields:

bh= -e,12(1-.)

2

(In

(12)

a simple linear relationship between hand b. For example
for v =, 0.3:

h=O.6195b (13)

Thus, considering that, in the immediate neighborhood of
the contact point, relative displacement solutions are prac-
tically identical for the tooth and half-plane problems, equa-
tion (U) allows one to. usethe point-load solution to calculate
displacements at a distance h below 'the surface, on the line
of action. These displacements are then equal to those aris-
ing from an elliptically distributed load. Parameterb has to

12 'Gear Technology

2.

fig. S-Half-plane solutions: comparison of displacements vI/a (b = 0.1,
0.2) and vPo (b = 0).

y

fig. 6- Equivalent depth h for surface displacement calculation.

be calculated using the classical Hertz formulas(14J and will
depend on the mating gears (size and material), on the load
transmitted, and on the locationon the line of action, since
profile curvature varies from point to point.

Calculation of Tooth lFIexibility
Fig. 7 shows nondimensionai displacement curves 50

calculated for a standard AGMA profile (30 'teeth, .20 deg)
asa function of the contact point abscissa on the line of ac-
tion and for depths h = 0.0015 in., 0.01 in., 0.1 in. under
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Fig. 7-'Displacement 00 versus abscissa of load on line of action; standard
AGMA gear (30 teeth. 20 deg); calculation depths; h - 0.0015 in., 0.01 in..
0.1 in. under contact point

the surface. It is important to note that these curves are in-
dependent of the absolute dimensions of the gear. The flex-
ibilitycurve obtained by Comell(1O) for the same profile is
also shown in Fig. 7. It does not indude the local deforma-
tion since that deformation would depend on the mating gears
geometry, as well as on materials and transmitted loads.

Indeed, for a given pai:r of gears, and a given tangential
load W, one has to cakulatethe corresponding depth of
calculation h at each loading point, The resulting flexibility
curve is shown in Fig. 8 for the particular case of a pair of
identical standard AGMA gears with the following
characteristics:

number of teeth:
pr-essure angle':
pitch P:
material:
pressure at pitch point:

20
20 deg
1
steel
200 MPa

Besides, if the contact ratio is taken into account, there is
a decrease in the load W when two pairsare in contact.
Paradoxically, the flexibi.lity curves seems to indicate a
slightly higher nomina] deflection in that case than when only
one pair is in contact. This is due to the fact that for a given
pressure at pitch point contact pressure is lower in the dou-
ble contact region, yielding a smaller contact width b, and
a smal.1er depth h. Thus, nondimensional flexibility curves
60 = c5E/W are discontinuous between single and double

contact f,egions, owing to the fact that contact pressure is
nonlinearly related to W.

In the load-sharing case, one should calculate deflections
iteratively since pairs of gears, at a given instant, have at dif-
ferent flexibility. Thus to know how they share the total load
W, one has to know the flexibility curve.

That effeet on nondimensional displacement 00 = oeEI W
is due mainly to the Hertz effect (local compression), which
varies as W" ,and it is easily verified that very little
discrepancy is obtained on the nondimensional flexibility
curve by letting each pair in contact share the load equally,
The approximate curve thus obtained can then be used to
calculate the real distribution ..

Finally, the global flexibility curve fora given pair of gears.
is obtained by adding the separate curves for each gear. fig.
9 shows the case of a pair of identical standard AGMA gears
with indicated parameters. The CPM flexibility curve is com-
pared with that obtained using Weber's approach. In this case,
agreement is quite good except for a shift of one curve with
with respect to theother, due to a diHerent way of selecting
a reference point.

Conclusion
It has been shown how expressions obtained through CPM,

in the point load case, can be used to calculate displacements
at the contact point of a given pair of spur gears, First a pro-
per reference point has to be selected; then, displacements
have to be calculated ata certain depth under 'the surface.
That depth has been shown to vary linearly with th width

11.~----~-------r----14,-r------+-----~r--Y.~-i

"l~ I
• CHABERT ET AL. [71

17 !Htl1- FE...,

~-----4-----+---10 I

-ZIP -lIP PITCH liP
ROOT POINT

UP
TIP

FIg. ,8- Di~l;I1acement Eo versus abscissa of 10 d on. line of action for a stan-
dard AGMA gear (20 teeth, 20 deg) meshing with an identical gear; max-
imum pressure at pitch point: 200 MPa. P ... 1.
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of the contact zone as calculated from Hertz's theory. Con-
tact width may be calculated at each point on the line of ac-
tion and depends in a nonlinear fashion on absolute dimen-
sions, material properties and transmitted load. This being
known, the flexibility curve for the given pair of gears may
be obtained, including the load sharing effect. Comparison
with published results by Weber, (3) Chabert, (7) and
Cornen(lO} shows good agreement regarding the shape' of
flexibility curves, except for a slight shift between these
curves, which is due, probably, to the selection of different
reference points.
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Fig. 1-Relationship of maximum quenched hardness of alloy and carbon
steels to carbon content. Courtesy Republic Steel Corp,

Fig, 2-Comparative hardenabitity of Q,20-percent carbon alloy steels.
Courtesy Republic Steel Corp,

Fig. 3 -Comparative hardenability of 8600 Alloy Steels. Courtesy Republic
Steel Corp,

on carbon content, Fig. 1. Also, section thickness has con-
siderable influence on the maximum hardness obtained for
a given set of conditions; the thicker the section, the slower
the quench rate will be. Variations in test bar hardenability
curves for various 0.20-percent carbon and alloy steels is
shown in Fig. 2. Similar hardenability curves for 8600 alloy
steels with various carbon contents is shown in Fig. 3. Max-
imum hardenability of case-hardened 8620 steel is achieved,
Fig. 4, when the case carbon concentration is O.80-percent.

H-steels are guaranteed by the supplier to meet establish-
ed hardenability limits for specificgrades of steel. These steels

46 Gear Technology

Fig. 4 - Curves showing that maximum hardenability of 8620 steel is achieved
when case carbon concentration is at O.80-percent carbon. Courtesy Climax
Molybdenum Co.

Fig. S- Hardenability upper and lower curve limits for 8620H steel. SAE
Iron and Steel Handbook Supplement 30,

are designated by an "H" following the composition code
number, such as 8620H, Fig. 5. Hardenability of H-steels and
a steel with the same chemical composition is not necessari-
ly the same. Therefore, H-steels are often specified when it
is essential that a given hardness be obtained at a given point
below the surface of a gear tooth.
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