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The Geometry of Helical Mesh
Introdudi.on

In J 961 ~ presented a. paper.
"Calculating Conjugate Helical Forms,"
at the em:i-annual meeting of the
American Gear Manufacturers Associa-
tion (AGMA). Since that time, thousands
of hobs, shaper cutters and olller mesh-
ing parts have been de igned on the basis
of the equations pre eared in that paper.
This article presents the math oflhat
paper without the formality of its devel-
opment and goes on to discuss its practi-
cal application.

Most gearing texts quickly get
through the fundamental law of gear
tooth action and start concentrating on
the involute. While involute geometry is
undeniably the mo t imponant aspect of
modern gearing. it will be useful to
examine the genera] geometry of parts in
me h with each other in order to under-
stand the generating proce sfor involute
gears, straight-sided pline. impeUer
rotors, sprockets and any othertoothed
form that runs with a mate or that is
hob bed, shaped, ground or haved, The
math presented here is applicable to any
toothed form, internal or external, mesh-
ing on either parallel axe or cro ed
axe . Thi .article intends to explore:

J. How to calculate a mating form to
mesh with any known form.

2. How to overcome calculation prob-
lems :in computer-generated forms.

3. How the fundamental law of gear
tooth action applies to crossed-axis gearing.

4. How to calculate the path of con-
tact in three dimension .

5. Wily generated forms may have
unwanted "fill-in" and "round-ever,"

6. How to use mesh math. to solve com-
mon de ign and manufacturingproblems.

The math. in thi article may be used
directly wi.lllout having an understanding
of underlying concepts. However, it is
based on a theorem and it corollary. both
of whichare so simple in concept that
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they can be understood without vigorou
proof:

Theorem. A. To assure conjugate action
between a helical form and a rack. the
surfaces of these forms should come into
contact along a single line when placed
in tationary mesh.

Corollary. [f each of two helical forms
in stationary mesh with each other make
line contact with the opposite surfaces of
an iafinitesimallythin rack form inserted
between them, the helical forms will
have conjugate action with each other,

The term "line" is used in the gearing
sen e-actually a curve in space, single-
valued in x, y and z. OnJy in involute gear-
ing does this curve resolve to a straight
line. The term "conjugate' mean mesh-
ing with. on-going contact at a. constant
velocity ratio. Using this theorem reduce
a dynamic analysis to a static one.

Understanding Theorem A
WUhout Heavy Math

Consider a helical gear illl stationary
mesh with a rack, (This could be any rack
and gear, but. for simplicity. make it an
involute rack and gear.)

Mentally roark a reference axial posi-
tion where a transverse cross section of
the gear contains the gear tooth and rack
tooth in ecntactat the pitch point (The
common contact line for Theorem A i a
segment of the involute generatrix pa s-
ing through this point The generatrix is
the straight line that unwinds from the
basehelix like a taut string and generate
the involute tooth surface.)

Now rotate the gear through a small
angle, dri.ving the rack with it. Move the
transverse cross section axially to a new
reference position where the same gear
tooth and rack tooth are again in contact
at the pitch point

Obviously. everything about this new
configuration in the vicinity of the pitch
point is indistinguishable fromlhe previous
configuration. which indicates that as the

AngleSItwllll" Ax",· - For two gear.s in
mesh. this is the algebraic sum of the two
helix angles.

Am.,. - The collection of coordinate
points that describe a form.

Helix Angl, - The angle between the
gear all.is and iii),)! racl\. element. The hell)l;
angle has the same sign as ths lead. The
rack elementthat contacts the gear atthe
pitch point is tangent to the helix of the
gear at its pitch radius.

Llad- The axial advance in tracing anv
helix of a gear tooth through 360". By con-
vention a left-hand lead is negative.

Lill,-Arc G·'OfMtJy- A form made up 01
a series of arcs and/or lines all connected
end to end.

NOlmal- As an adjective: being at right
angles. As a noun: a straight line perpen-
dicular to a surface.

NDmrlII Circu/" Pitch - The normal dIS'
tance from a rack element on one rack
tooth to a similar element on the adjacent
rack tooth.

PitchPoint- The tangent point viewed in
the transversa plane 01 the gear where 8
circle on the gear (Gear Pitch Circlel rolls
without s1ippingalong II line on the rack
(Rack Pitch lina),

Rack fi,m,,,,, - For a rack constrained
to move in a horizontal plane. any straight
horizontal line on the rack surface.

Slop,- The tangent of the slope angle.

SlopeAngl,- The angle from the posi-
tive X axis to a line that is tangent to a
form at a given point.

Spur.p,rI- A 'gear Dr other toothed part
that hasa helix angle of zero.

gear rotates, the shape of the contact line
remains unchanged, but traverses along the
rack: elements as the mesh advances.

Therefore, without ever rotating the
gear, we know that conjugate action would
occur with the rack if we did rotate it

By using the corollary to Theorem A,
we can determinethe form of a second gear
meshing conjugately with a given gear
withoutconsidering any rotational aspect,
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TABLE 1'1- SYMBOLS

L
L'
N
N'
R
R'
a
13
lK
1M
I
C
P

xt,)If
st

xr: yr'
xt: yt'
zs', ya

xc: YC·, zc:
xc, ye, zc

xc, yc', zc'

Known part lead
Malin g part lead
Known part number of teeth
Mating part number of teeth
Known part pitch radius
Mating part pitch radius
Known part helix angle
Mating part helix angle
Multiplier 1
Multiplier 2
Angle between axes
Center distance
Normal circular pitch
Input coordinates
Slope at xt,yt
Output coordinates

Left hand is negative
Left hand is negative

Left hand is negative
Left hand is negative
-1 if either partis internal, else t 1
-1 if mating part is internal, else +1

'Known form defined in transverse plane

Rack form
Mating form in its transverse plane
Mating form in its axial plane
Path of contact in rack axis system
Path of contact in known part axis system
Path of contact in mating part axis system

-----

TABLE III - STANDARD' Eo.UATIONS

p = lTINormal Diametral Pitch (11
R = p., N/[2 • 1t • cosa) OH •• [21
11"= p. N'lI2· It· cos13l ,13)
L' = (2 .']t'. 11'. N'/M • coso1sinl3 (4)
L '= IK· (2 ., ]t • R • N,/M/(sinL -(2 • 1t • RlL) • cosL:J [4.1)
a = arctan(:! • It· R/L) i5)
8 :::arctan(2 • It .•RIL 1 i6)
I ::: a + B • 11<.. (7)
C = 1M • (R -I- IK • R'j. (8)

Note 1:Equation B is for a standard center distance. However, the pitch cylinders of two gears
in mesh at crossed axes may be tangent to each other, intersect or not meet at all, so C can
vary from this calculation.

Note 2 R'in Equation 3 is not used in the mathematical form development equations, and since
Band Care usuallv determined bVexternal requirements. R'is mainly an informational quantity.

Note:J. The lead of a spur gear is infinite. For computer purposes, tile lead of a,spur gear may
basntarsd as zero, which the computer program can use as a code' to actually make,lit equal
to zero. By the same token, the solution for llL'instead of L' [Equation 4) is usually made when
calcula,ting by computer. This avoids operations with infinity, which result in computer error.

X'

c

Rack Elements Parallel ~ './"
to Z·Axis .............

/')3.: z
Fig. 1 - Tlte three' coordinate axis systems.
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Part I-The Math of Mesh
Parallel-axi s geari ng and crossed-axis

gearing differ in that two helical forms in

mesh on crossed axes make only point COI1-

tact, while two forms in mesh on parallel

axes make line contact. This math is applic-
able in both cases, including spurforms,

For the purposes of this article, the
form of the known part is assumed to 'be

:in its transverse plane (plane of rotation).
We choose the transverse plane because

it will accommodate all gears from spurs
10 worms. A spur form cannot be defined
in the axial plane ..

The form is expressed as a series of
coordinate points with associated slope
(Xl, yt; st). AU of these xt, yt points taken
together are referred to as the xt, yt array.
In practice, of course, the form may

begin by being defined (by line-arc
geometry for example) in some other cut-

ting plane and cranked along the helix. by
some utility computer program to tile
transverse plane in point-slope format. ]I

is a fairly simple procedure to pick both

points and slopes from forms defined by
line-arc geometry. TO' keep our defini-
tions straight, note that the known part
form is the input form, and the mating
part form. is the output form.

Fig. I shO'WS the three coordinate sys-
terns used in this math, X, Y, Z is the sys-
tem for the known part where Z is the part

axis, and the X-Y plane is the transverse
plane of the known part. X', Y', Z' is the
system for the mating part where Z' is the
axis of the mating part. The rack occupies
the X", ]1", Z' system where Z' is parallel

to the rack. elements. Note the glossary of
tenns .in Table I, the symbol definitions in

Table n and the standard equations in
Table m. The standard equations provide
a means for derivi.ng various parameters
from other known parameters. The helix
angle of the known part is a; that of the

mating part is jJ. and E is the angle
between the axis of the known part and
the axis of the mating part. In Fig. I, a
and jJ are both illustrated as positive
angles, which for this case means both the
known part and the mating part. have right

hand leads and helix angles. The center

distance between the known part and the
mating part is C. The number of teeth in
the known part is N, and N' is the number
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of teeth in the mating part, The lead of
the known part is L, and L' is the lead of
the mating part, TWo unit multipliers, IK
and 1M, provide required sign changes
when either of the parts is internal The
pitch radius of the known part, R, may
have any value that lies within the frame-
work of the standard equations and that
is large enough to keep Equation I I from
becoming the square root of a negative
number, It is often chosen so that the
pressure angle of the mating part stays
above some minimum value. The sign
convention ofthe axis systems allow the
output form geometry to be fed back
directly as input form geometry.

tjJ. '" arctan(lIst) (9)
\I =xl. sincp+ yt· cos¢" (lO)
q=~R- V· v (11)
x2= II" sinq,± q ·oosq, ,( 12)
y2 = II ••wst/J+q •. sinqL (13)
e = arctan(x2Iy2) (14)
xl! = xt» wsB- yto sinc:l (l5)
yk = xt» sine + yt» C05(9' ( 16)
zk =.5' L' 6Ylr... (L7)
xr =xk+R·,e (L8)
yr = yk (l9)
xr"=xr· cosc, (20)
yr"= yr (21)

In the X-Y plane, x2, y2 is a point where
the normal to the form at the point xt; yt
intersects the pitch circle, Since any line
that intersects a circle bas two intersec-
tion points, x2, )'2 has two possible posi-
tions as determined by the ± sign. Both
of these positions are valid, but only one
applies to the application at hand. In
most cases, the non-apphcable root
applies if you. change the space into a
tooth and the tooth into a space.

In Part n we will discuss selection of
roots and root tracking.

In the known part.axis system (X, Y. 2),
xk, yk, zk is a point where the known
form contacts the rack form when placed
in stationary mesh in accordance with.
Theorem A.

Point xr, yr is on the rack as seen in
the X-Yplane.

Point xr", yr" is on the rack in the
rack's own X"-Y" plane .. The xr", sr'
array defines the complete rack form.

ym' ;:;;C ·IM - yr (22)
xm' ;;;;;UK. R • N'IN - ym '.

cosjl/cosa)/tan(1/J - e).....(23)
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MORE ACCURACY
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LONGER LIFE
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--- ------
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zm'= lK· (-u" -ml'·OOI!P)'sil~It.~(24)
l' =aretan(.un:().m.')-

(l7I1' .• oosjJIrosa +xr) •

n·Nf(R ..Nj ...................•..(25)
zo' "" IX" 1: .. 5 L 1 (26)
ya'= !.mI' ".DrI:'.+ ym:' .·ym· .•..•..•.. (27)

XI' = lK· Ja'" sio1:. •._ .••._ .•..•..•.. _..(28)

yt' = IK·· )la'· COS1' (29)
1be transverse pressure angle of the

known part at d1e point of comaet with

____________ GEARRJND.AMENT~LSI ..

the rack is (41 - 6). Point .xm', ym', vn' is
in the mating part axis system (X', r,Z').
where the mating form OOIltactsthe rack:
form when placed. in stationary mesh in
accordance with the corollarytoThe-orem

A. 11rissame point cr.mkedal~g Ithe belix
to the transverse plane of the mating pan: is
xt~ yt'. Ouked along the helix to the axial
p)aneof the maJing part, it is w'; ya'. This
math wmb even when the mating part isa

!56: (H I. IR HCHNQLQOY

spur form, In. this case, calculations for
)'Q', xt'andyt'are valid, bmza' in Equation
26 goes to infinity. For this reason, the .It',

yl' array should be: considered the primary
definition of the ,output fonn.

Notedlat Equations W7 and 24 are
included for three-dimensional complete-
ness 'but, along with Equation 26,are not
required in. the math for the final output
fonn. Avoiding these threeequations will
remove mostpossibilities of dealing with
division by zero in the computer.

For computer applications. Equ-
ationsJa and 25 should use an expand-
ed arctan. routine [ATAN2{x2, y2), for
example], so that the resultant angle
will lie within the fun range of ± [800

instead of the usual ± 90° .
.Part. D-Solving Calculation,

DIfficulties
Point ;a, y2 always has two possible

positions ,corresponding to me ± 'condi-
tion in Equations 12 and 13. (Note that
when "+" is used in 02), «,» is used in
(13) and vice versa) Experience has
shown that there is not an easy way to
pre-select which. sign to use in choosing
one of these positions, so we calculate
both of them. and compare them with OlU

model for tbe applicati.onal hand.
In order to apply root !racking logic, the

array of'points XI, yl must be in consecu-
tive order from the shoulder on one side
'of the form to' the shoulder on the other
side. Use the following allgorithm to
select the correct root

t. Select the first point XI, yl with
slope st, Set IFIRST .. I,

2..If Equati.on I ~ becomes the square
root of a negative number, there is no
output point corresponding to this input
point, so go to Step 6. 'Otherwise, calcu-
late both positions of the point. x2, y2 and
both positions of the point Xl; yr.

if !FIRST equals 0, go to Step 4.
Otherwise, calculate the distance,

mSTl, from xf, yl to the first position of
x2. y2. Calculate the distance, mST2,
from xt, yt to the second position of x2, y2,.
Distance calculation is the simple "square
root of the sum of the squares" usee! to find
the hypotenuse of a right triangle.

3. If nrsrr » less than DIST2,then
choose the first position of x2. y2 and XI;

yr as the correct values. Go to Step 5.
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Otherwise DlST2 is less than DIS-n.

so choose liIe second po ition of x2, y2 and

xr. yr as the correct values. Go to Step 5.

4, Calculate the distance, DIST!,
from XRSAV. YRSAV to the first po i-
'lion of XT; yr. Calculate the distance,
OIS1'2, from XRSAV. YRSAV to the sec-
ond position of XT; yr. Go to Step 3.

5. Save the chosen position of point
xr, yr as XRSAV, YRSAV. Calculate and

Fig.3 hows the mating form directly

after curve fitting and again after elimi-
nation of loops and zigzags,

A zigzag OCCLlI'S wheneverthe genera-

tion goes through a brief reversal before
continuing on, The zigzag is usually not

visible except at high magnification and
would not ordinarily affect the display or
usage of the form. However. if line-arc
geometry containing a. zigzag is present-

save XI', yt' in a point array. Hall points ed to a computer program for further pro-
in the xt; yt array have been processed, go'
to Step 7. Set WIRST=O.

6. Select the next point xt,
slope st. 00 to Step 2.

7. Exit algorithm.
This tracking logic works best whemhe

output points xt: yr' are paced closely
together (about .001")'. Because output
spacing is seldom the same as input pac-
ing, sometimes the spacing of the input
points xt; yt will need to be decreased in
order to achieve sati factosy output p c-
mg. Also, whenever the input tooth. fonn

bas a sudden change in slope. such as the
comer of a tooth whe:rethe outside radius

intersects the tooth flank, that comer point
should be entered several times wilh the
same xt. ytvalues. but with s!ope(st) val LIes
ranging from the slope of the curve at the

outside radius to the slope at the flank. This
is because a single input point can generate

a serie of dLfferent output points, A similar
, ituation occurs when replacing the corner
poim with a vel)' small comer radius.

Atter the output fonn has been calcu-
lated, i.t invariably needs further enhance-
ment 'to be useful. Some of the calculated
output coordinate points may need to be
thrown out because they form a closed
loop or zigzag. Part V goes into the ig-
nificance of these discardedpoints.

Although it is possible to graphically
di play the output directly asa series of
points and to manually unseleet the
extraneous points, it. is, much easier to use
acurve fitting utility program. to fit the
points into line-arc geometry. Then
another utility program can trace through
this geometry and eliminate the loops
and zigzags. Fig. 2 . haws a known form

which is to be processed to calculate it
mating form. This is the tooth pace ofan
ordinary 20-loothpinion. The mating
form is a single tooth of a 75-~ooth gear.

cessiag or to an NC machine. it will be
perceived as an error condition. Fig. 4
shows a highly magnified section of a
fOn11. containing a zigzag and again with
the zigzag removed. Removal is accom-

plished. by finding the intersection point

after the reverse leg of the zigzag i dis-
carded and joining the form at that point.

For purposes of sending the output
geometry back. Ihroughthe system as input
geometry (an operation known as "play-
back"). it :is possible to derive from the

mesh equations the slope 81' corresponding
to each point xt'. yt' of the matiog part.
However, in practice this is avoided simply
by picking new points and slopes from the
line-arc geometry provided by the afore-
mentioned curve fitting utility program.

PartlU The Fundamental Law
of Gear Tooth Action

Applied to Crossed-Axis Gearing
The pilch cylinders of two gears in

mesh at crossed axes may be tangent. to
each other. intersect or not meet at all,
This statement has two implications. First,
it implies that. each pitch circle has its own

pitch point. Secondly, it implies that the
pitch circles of parts in mesh at crossed
axes do not change when the center dis-

'lance changes. Both of these implications
are true, which leads to a restatement of
the law of gear tooth action when applied
to crossed-axis gearing:

"In order for two meshing parts to
have conjugate action, the common nor-
mal at any point of contact must pass
thrilugh the line whase end view in the
transverse plane is a pitch 'point."

The italicized words extend the stan-
dard law into a. more universal law. When

the pitch cylinders are non-tangent. the

common normal must therefore pass
Ihmugn both lines whose end views are
pitch points, Visualizing this injhree

Tooth Space of
20· TOoth Pinion

Before loop
Removal

Fig. 3 - IOutput. fonn.

Fig. ,,- Zigzag. 251111:size .

\
Hob Tooth
With Lu;s

'v

~ ~\....r..... "::
Pitch Circle

2 Teeth of a 6·Tooth Spline

Fill'. 5 - StraIght-sided spline and bob tooth.
dimensions will be somewhat easier after

considering the path of contact equations
in Part IV,

When the pitch cylinders are tangent to
each .other. which is the rome common
case, both of 'the pitch points are coinci-
dent. Although the math of Part I does not
require direct application of this extended
law to define the maLin.g form, neverthe-
less, an understanding of (his geometry
will help in visualizing the contact of pans.
running at non-standard condition .

Two further points should be noted:
l) For parallel-axis ge-aring. the pitch

circles of mating gears must always be
tangent to each other, which means that

SE,PTEMBEAJOCTOIIEA 1II~7 51'
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the pitch circles must change when the
center distance changes.

2) For involute gearing. a change in
center distance does not require a change
in the tooth form. For any other meshing
pair, a new mating form must be calcu-
lated for any center distance change,
regardless of whether the parts are
designed to run with. tangent pitch cylin-
ders Of non-tangent pitch cylinders.

Part IV-The Path of Contact
An important part of mesh math is the

calculation of how the mating parts COIl-

tact each other. This can tell us not only
where contact occurs in each coordinate
axis system, but the limits of contact.

SEE IJS AT AGMA GEAR EXPQi BQiOTIH #126
5& G.EAR TECHNOLOGY

When the pairs mesh on parallel. axes,
the path of contact does not have the
same meaning as it does for crossed axes,
so Equations 33-52 will not apply.
Instead of single point contact" simulta-
neous contact occurs all across the face
of the meshing parts in parallel-axis
gearing, so we usually only define the
path of contact in the transverse plane.
Equations 15 and 16 give the contact
point xk, yk in the transverse plane of the
known part, which, for parallel axes, is
also the transverse plane of the mating
part. The following equations give the
contact point in the rack's X"-Y" plane
(which is the part's normal plane):

xe" = xklcosa. (30)
ye" =yk ".(31)
zc" = 0 (32)
For crossed-axis gearing, previous

equations have established where each of
the two forms contact the same rack ele-
mera, but not at a coincident point. We
know that part rotation willcause a con-
tact point to move along the rack element.
so it is a simple solution to find the
amount of rotation, 8, definedin the trans-
verse plane of the known part, which will
bring the two points into coincidence:

tk" = zk 'cosa - xk 0 sina (33)
zm" = zm'» cosJ3-xm'oIKo sinjL(34)
8 .. 2 • 7t • (lm" - lk")/
[L· oosa+ lK" (N/N) 0 L'· co~J3] (35)
zc" = xr" + R • 8· cose; (36)
yc" .. yr" (37)

zc'' .. ik" + .5 .' 8· L '. cosodn (38)
The distance on the rack element

between the contact point with the
known part and the contact point with the
mating part when both. parts are in sta-
tionary mesh in accordance with the
corollary to Theorem A is (zm" - lk").

Point xc", yc", zc" is in the rack axis
system (X", f", Z') where the known pan
contacts the mating part after the rota-
tional adjustment. The xc", yc", zc" array
of points describes the path of contact of
the mating pair. Further, since zc" is usual-
ly zero (see next paragraph), the contact
path usually occupies only the X"-Y'
plane. This i.s very convenient for display-
ing the active mesh of a mating pair on a
computer screen.

When meshing at crossed axes with
tangent pitch cylinders the term zc" is
always zero for any form, involute or
otherwise. When the cylinders are 1100-

tangent, the center distance becomes
greater or less than standard. and zc'
becomes a nonzero constant for involute
forms (plus on one side of the tooth and
minus on the other). For non-involute
forms. zc" becomes a variable. The actu-
al value of zc" depends 00 the amount of
deviation from the standard center dis-
tance and other factors. Geometrically.
this deviationallows the common normal
to inler eel both lines whose end views
are pitch points, a required condition
explained in Part ID. For a pair of non-

CIRCL'E 1124 involute parts meshing at a non-standard
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center distance, each pitch point moves

axially during the mesh, although their

end views do not change.

There are two special cases where one

of the forms is helical and the other spur.

In these cases either Equation 17 or

Equation 24 goes to infinity.
Case 1. Known part is spur. Do not

use Equations 17 or 33 or 35-38.
o :=, -B " (39)
xc" = xk n ••• (40)

ye" = yr" , (41)

ze" = Uti" + lK .' e'.R '.
cosj3/5inj3 , (42)

Case 2. Mating part is spur. Do not
use Equations 24 or 34-38.

o = - [xr" + xm')l(R· cosa) ,.(43)

xc" ""-xm' " " " (44)
yc" = yr". ".." " " " " .." (45)

ze" = tk" - .5 • L '.'
(xr" +xm)/(n·R) ,.,.{46)

F.inalJy, Equations 47-49 convert the

contact point zc'', yc", z.c"lo the known

part axis system, and Equations 50-52
convert it to the mating part axis system.

xc = xc" • cosa - z.e"· sin a (47)
yc = yr" , (48)

zc = xc" • sina + zc" • cosa (49)
xc' = -xc" • cosj3 - y:" ·lK· siJ!lL ..(50)
ye' =ym' , (51.)
zc' = -xc" '·lK'· slly'3+ zc" '. ;oosj3 (52)
Part V-Fill-In and Round-Over
TWo common problems with generated

forms are "fill-in" and "round-over." FiU-
in occurs when you ask for a small root fil-

let. but because of spatial interference

(those points we had to throw out back in
Part m. the generating too produces a
sweeping trochoidal fillet instead. This can

be avoided by reducing the pitch radius so
that the pitch circle passes through the root
fillet. because the least amount of relative
motion occurs at the pitch point. 'This, how-
ever, often leads to the problem of round-
over. Round-over is required whenever the
desired tooth form has a section where the
normal to the surface does not intersect the
pitch circle. It is not possible to generate a
fonn at a point where the normal does not
intersect the pitch circle (because Equation

11 becomes the square root of a negative
number), so the solution must be either to

increase the pitch circle Of to change the
curve of the tooth form (rounding over),

allowing generation to occur.
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The hobbing of a straight-sided spline

provides a perfect. example of both these

problems. When the pressure angle is low
(as in the case of straight-sided splines),

the pitch circle must be large enough to

avoid round-over, but the farther the pitch
circle is from the spline tooth root, the

more fill-in occurs. Often a compromise is
made where the manufacturing form toler"

ance is used to allow incipient round-over
near the tip of the spline, and lugs are

added to the tip of the hob to push tl:Jefil-
let into a groove. Fig. 5 snows a spline
form and the hob tooth that generates it,

Part Vl-Using the Math (If Mesh
The design of parts that mesh with each

other, such as seam rollers and impeller

rotors, can be optimized rapidly by gener-
ating mating forms at varying center dis-

tances and viewing the mesh graphically.

Contact limits can be calculated to find
the required widlh of parts meshing al
crossed axes. These limits also can define

the generating length of a hob. Contact

points and contact limits can be calculated
for gear shaving cutters. which routinely
mesh on crossed axes at non-standard cen-
ter distances.

In addition to the obvious use of the
math to calculate mating fOIIDs, it may
also be used. to determine theamount of
error that occurs when non-involute
forms mesh at changed center distance.
The most common example of this is a
hob designed. to cut an impeller form,

sprocket or a straight-sided spline. As the
hob is sharpened, it runs at a closer and

closer center distance than it was
designed for. By running the hob form
through the mesh math with a reduced
center distance, the actual. part form may

be determined. This can be compared

with the desired part form (u ualJy by
graphical overlay),

Even involute hobs are not totally free
of this problem, Hobs are invariably man-
ufactured wilh straight sides rather than
the curvature required by the involute.
When they are sharpened, they deviate
even further from the theoretical curva-

ture. This error will never be discernible
except in very coarse pitch hobs or multi-

ple start hobs because the involute curva-
ture is so slight on single thread involute

worms with a smallleadldiameter ratio.

Another application i determining the
range of teeth a non-involute hob or
haper cutter can cut. Chain sprockets.

timing belt sprockets and pre-shaved

involute gears are examples of parts

which have hobs or sbaper cutters

designed. fora particular number of teeth.

Mesh math can determine theform that
these tools will produce when they cut a
different number of teeth ..Then a graphic
overlay with the theoretical form will

quickly determine whetherjhe form error
is great enough 'to warrant a new hob or

shape. cutter design.

Yet another use of mesh math is to
determine how close a generated form

will be to the desired form. As a case in
point, consider a toothed ratchet form with
a sharp root fIllet which is to be produced
by hobbing or shaping. The ratchet tooth

form is fed into the mesh math, and the

hob or shaper cutter tooth is output.
Depending on several factors, there will

probably be some unavoidable .10s of
form, which will result in having fill-in at

the ratchet tooth root fillet. Because the
mesh math is reversible, the hob or shaper
cutter geometry form data can be fed
directly back through the system to deter-

mine the actual ratchet tooth form. This
often points to the simple solution of

choosing a smaller pitch radius, or it can
lead to a redesign of the hob as a "mutilat-
ed tooth" hob or an "alternate gash" hob.

The concepts of the rnathematics of

mesh are simple, but they require care in
their application. Neverthele s, a mini-
mally experienced. computer programmer

should be able to make productive use of

these equations. 0
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