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Management Summary
With reference to the machining of an involute spur or helical gear by the 

hobbing process, this paper suggests a new criterion for selecting the position of 

the hob axis relative to the gear axis. By adhering to the proposed criterion, the hob 

axis is set at the minimum distance from the gear axis, thus maximizing the depth of 

the tooth spaces of the gear. The new criterion is operatively implemented by 

solving a univariate equation, which stems from a new, synthetic analysis of the 

meshing of crossed -axis, involute gears. A numerical example shows application of 

the suggested procedure to a case study and compares the optimal hob setting to 

the customary one.  

Introduction
Hobbing of both spur and helical gears is 

generally done by setting the axes of the gear 
and the hob at an angle that is the algebraic 
sum of the pitch helix angles of gear and hob 
(Refs.1–2). Such a standard way of determin-
ing the shaft angle—although conducive to sat-
isfactory results—does not rely on a convinc-
ing rationale. Suffice it to say that any referral 
to pitch helix angles is questionable because 
the meshing of a hob with the gear being 
machined does not involve any pure rolling of 
a pitch cylinder on another pitch cylinder (as 
would be the case, instead, for the meshing of 
two gears mounted on parallel-axis shafts). 

The possibility of choosing the setting 
angle of the hob cutter in a non- standard way 
is mentioned in Reference 3, together with the 
related implications on the tooth thickness 
of the hobbed gear for a given gear  hob cut-
ting distance. Nevertheless, the technical lit-
erature does not seem to have explored this 
hint, and even more recent contributions on the 
hobbing process—see, for instance, References 
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4 and 5—do not question the standard choice 
of the hob setting angle as the sum of the gear 
pitch helix angle and of an angle that charac-
terizes the hob.  

This paper first revises the kinematics of 
meshing two crossed- axis, involute helical gears 
(Refs. 3 and 6), and presents an original, concise 
relationship for determining the meshing back-
lash in terms of the gear dimensions, shaft ax-
is distance and shaft axis angle.

 Subsequently, the paper narrows the 
analysis down to the meshing of a gear 
with a hob. By considering a zero-meshing 
backlash, the optimal shaft angle for hobbing is 
determined as the value of the shaft angle that 
minimizes the shaft axis distance. By adopting 
this criterion, the depth of the tooth spaces of 
the gear is maximized, which could be favor-
able for the contact ratio of a gear pair (under-
cutting issues are beyond the scope of this 
work). The paper shows that the value for the 
optimal shaft angle stems directly from numer-
ically solving a univariate equation. 

Embracing the presented method gen-



 hand flank according to whether the following 
quantity is negative or, respectively, positive, 
as in: 

(2) 

In Equation 2, (P−O) is the vector from 
a point O on the gear axis to a point P on the 
tooth flank, whereas q is the outward  point-
ing unit vector orthogonal to the tooth flank at 
point P. 

Two meshing helical involute gears—from 
here on known as Gear 1 and Gear 2—are now 
considered. As is known, in order for the gears 
to mesh, they must have the same normal base 
pitch. This condition translates into the follow-
ing equation (see Eq. 1): 

(3) 

where quantities ui (i = 1,2) are defined by: 

(4) 

erally leads to shaft angles for hobbing that 
are very close to those determined by the 
standard procedure. Even so, the paper high-
lights the arbitrariness and limitations of the 
standard procedure for the selection of the 
hobbing shaft angle. Moreover, it makes 
available a consistent procedure that is eas-
ily employable, despite being more in-
volved than the standard one. 

Due to the similarities between the kine-
matics of the two manufacturing processes, the 
results reported in the paper for gear hobbing 
are also applicable to gear grinding when car-
ried out by a threaded grinding wheel. 

A numerical example shows application of 
the presented procedure in a case study and 
compares the new results to those obtainable 
by the standard, albeit less-than- optimal pro-
cedure. 

Contact Between Involute Helicoids
This section and the next one reformu-

late the basic equations that are instrumental 
in the analysis of the meshing of a pair of 
involute helical gears mounted on crossed -
axis shafts. Because they involve only the 
elemental geometric parameters of the 
gears in mesh, the presented formulas are 
simpler than those reported in the technical 
literature, and thus more suited to be alge-
braically manipulated in the pursuit of this 
paper’s scope. Some of the equations report-
ed in this section stem from specialization of 
formulas traceable in Reference 7. 

The fundamental geometric parameters of 
an involute helical gear are the radius ρ of the 
base cylinder, the base helix angle β (−π/2 < β
< π/2 radians), the number of teeth N, and the 
angular base thickness ϕ of a tooth. Aside 
from N, all of these parameters are shown 
in Figure 1 with reference to a tooth of a heli-
cal gear. (In Figure 1, the involute helicoids are 
shown as emerging from the base cylinder, irre-
spective of the actual extent of the tooth flanks. 
Furthermore, angle β in Figure 1 has to be 
considered as positive because the base helix 
angle is right-handed.) The normal base pitch 
ρ of the gear is the distance between involute 
helicoids of homologous flanks of adja-
cent teeth. It is provided by (Ref. 3): 

(1) 

As soon as the axis of the gear is 
directed in either way by a unit vector n, a 
tooth flank is a left- hand flank or a right-
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Figure 1—Basic geometric parameters of a helical involute gear.

P

�������

�

q

�

n



(5) 

where: 

(6) 

The point of contact between a right-
 hand flank of Gear 1 and a right- hand flank of 
Gear 2 is bound to lie on a straight line 
that is tangent to the base cylinders of the 
two gears at points P1,1 and P2,1. (In this two-
 index notation, the first index refers to the 
gear and the second index to the tooth flank—
1 for a right- hand flank and –1 for a left- 
 hand flank). The line segment P1,1 and P2,1 is 
the path of contact for right- hand flanks. 

To determine points P1,1 and P2,1, together 
with their mutual distance σ1, two auxiliary 
re fe rence  f rames—V 1,1 and  V 2,1—are 
introduced. The origin B

i,1 of V
i,1 (i =1, 2) is 

on the axis of gear i, at the transverse sec-
tion for gear i that contains point P

i,1. The z-
 axis of V

i,1 has the same orientation and di-
rection as the z- axis of W

i
, whereas the x- axis 

of V
i,1 is oriented from B

i,1 to P
i,1 (Fig. 3). If 

θ
i,1 is the angle of the rotation about the z-

 axis of W
i
, that would make the axes of W

i

parallel to the axes of V
i,1, the 4×4 matrix Mi,1Mi,1M

for transformation of coordinates from Vi,1 to 
W

i
 is given by:  

(7) 
    

 where: 

(8) 

a n d  b
i , 1  i s  t h e  z -  c o o r d i n a t e  o f  p o i n t 

B
i,1 in reference frame W

i
. 

The homogeneous components in V
i,1 of 

the unit vector e
i,1 of the contact path P1,1 P2,1, 

directed from P
i,1 to the other extremity of the 

contact path, is provided by: 

(9) 

where u
i
 is defined by Equation 4, while 

v
i
 is given by: 

With reference to Figure 2, the distance 
between the skew gear axes is denoted by a0. 
As soon as the axis of Gear 1 is directed in 
either way by unit vector n1, unit vector n2 is 
so directed as to make a left-hand flank of a 
tooth of Gear 1 contact a left- hand flank of a 
tooth of Gear 2. This also implies that if the 
angular velocity vectors of Gear 1 are positive 
with respect to n1, the angular velocity of Gear 
2 is negative with respect to n2). 

The common perpendicular to the gear 
axes intersects the axes themselves at points 
A1 and A2. A fixed reference frame W1 is 
now introduced with origin at A1, x- axis 
oriented towards A2, and z-  axis parallel to 
unit vector n1, with the same direction as n1. 
Similarly, another fixed reference frame, W2, 
is introduced with origin at A2, x- axis oriented 
towards A1, and z- axis parallel to unit vec-
tor n2, with the same direction. The angle α0 
between the gear axes is defined as the rotation 
about the x- axis of reference frame W1 that 
would make n1 parallel to n2. The 4×4 matrix 
M0 for transformation of coordinates from W2 
to W1 is: 
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Figure 2—Paths of contact of a crossed-axis helical gearing.
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and s2, 1 have the same sign. By also consider-
ing that 

s1, 1 = ± , (i=1,2), and taking 
advantage of Equation 14 as well, the ensuing 
expressions for s1, 1 and s2, 1 can be easily found 
as:

(18)

In Equation 18, quantity Q is provided by 
Equation 16, whereas λ is a yet- to- be deter-
mined integer whose value is +1 or –1.

An explicit expression of θ1,1 can be obtai
ned through the following trigonometric iden-
tity:

(19)

With the aid of Equations 14 and 18, Equa-
tion 19 yields:

(20) 

The expression of θ2,1 is likewise given by:

(21)   

(10) 

Similarly, the homogeneous coordinates of 
point P

i,1 with respect to V
i

V
i

V ,1 are: 

(11) 

The ensuing vector conditions: 

(12)

(13)

are conducive to determination of unknowns 
θ 1,1,  θ 2,1,  b 1,1,  b 2,1,  and σ 1.  Specif ica l ly , 
Equation 12 imposes the parallelism of the 
unit vectors e1,1 and e2,1 normal to the right-
hand tooth flanks of Gears 1 and 2 at points 
P1, 1 and P2, 1 respectively, whereas Equation 13 
calls for unit vector e1,1 to be parallel to contact 
path P1,1P2,1. 

To solve Equations 12 and 13, all vectors 
can be expressed through their components in 
reference frame W1. This implies left-
 multiplying e1,1| V1,1 and P1,1 | v1,1 by matrix 
M1,1, and e2,1| v2,1 and P2,1| v2,1 by matrix 
M0M0M M0M0 2,1M2,1M . If the gear axes are not parallel—i.e., v0

≠ 0—the last two components of Equation 12 
linearly provide the ensuing expressions for 
c1,1 and c2,1 as:

(14)

For a given value of the axis angle α0—
and regardless of the axis distance a0—the 
two considered gears can mesh together only if 
Equation 14 yields cosines of real angles; i.e., 
only if the following inequality is satisfied: 

(15) 

where: 

(16) 

By supposing that Equation 15 holds, the 
first component of Equation 12 provides infor-
mation on unknowns s1, 1 and s2, 1 as:

(17) 

As quantities u1 and u2 are both positive—
they are the cosines of angles lower in mag-
nitude than π/2—Equation 17 ensures that s1, 1
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Equation 13 can now be linearly solved for 
unknowns b1,1, b2,1, and σ1. Specifically, the 
expression for the length σ1 of contact path P1,1

and P2,1 is

(22) 

Since σ1 has to be positive, quantity λ is 
selected as follows:

(23)  

Thanks to Equation 23, s1,1 and s2,1 can 
be determined by Equation 18. By also tak-
ing into account Equation 14, angles θ1,1 and 
θ2,1 can be unambiguously evaluated in the 
range [−π, π] radians through Equations 20 
and 21. The expressions for b1,1 and b2,1 stem-
ming from Equation 13 are: 

(24) 

(25) 

The results obtained for the contact 
between right- hand tooth flanks can also be 
exploited to infer information about the contact 
between left-hand tooth flanks, as in the path of 
contact P1,-1 P2,- 1. Indeed, the left- hand flanks 
of both gears turn into right- hand flanks if the 
directions of the gear axes—as defined by unit 
vectors n1 and n2—are reversed. Thanks to this 
observation, the following relationships can 
be straightforwardly derived as:

(26)

This concludes determination of the loci 
of points where the involute helicoids of the 
two considered gears can come into contact. 

Crossed Involute Helical Gears in Mesh
By relying on the results reported in the pre-

vious section, this section is devoted to deter-
mining the gearing backlash through a proce-
dure similar to the one explained in Equation 
7. 

The gearing backlash H is here defined by: H is here defined by: H

(27) 

where N
i
 and ∆γi are, respectively, the 

number of  teeth and the angular  back-
lash of gear i (i=1,2). 

In order to determine the meshing back-
lash for Gears 1 and 2 revolving about two 
given axes, the meshing with zero backlash of 
Gear 1 with a fictitious gear, referred to as Gear 
2′ in the sequel, will be considered. The angu-
lar base thickness of Gear 2′ is greater than 
that of Gear 2 by an amount equal to ∆γ2, in 
turn related to the meshing backlash H of 
Gears 1 and 2 by Equation 27.

The involute helicoids L2 and R2 defining 
the left-hand and right- hand flanks of a tooth of 
Gear 2′ are now considered. Together with any 
other involute, helicoid gears mentioned in this 
section, L2 and R2 are supposed to extend in-
definitely, starting from their base cylinders. 
L2 is bound to come into contact with the left-
 hand flank L1 of a tooth of Gear 1, while R2

will touch the right-hand flank R1 of anoth-
er tooth of Gear 1, adjacent to the previous 
one. To find the relationship among the dimen-
sions of the two gears and the relative posi-
tions of their axes, the following four- step man
euver is imagined: 

a) the contact point between invo-
lute helicoids L1 and L2, initially supposed 
at P1,1, is moved to P2,1 by suitably rotating 
both gears about their axes;

b) by further rotating Gears1 and 2′, helicoids 
R1 and R2 are made to go through point P2,1;

c) the contact point between R1 and R2 is 
moved from P2,1 to P1,1;

d) helicoids L1 and L2 are made to 
go through point P1,−1, which brings Gears 
1 and 2′ to the position they had at the begin-
ning of the first maneuver.

In the first maneuver, Gear 1 is rotat-
ed by an angle γ1a

 given by (see also Ref. 7):

(28) 

In the second maneuver, Gear 2′ revolves 
about its axis by the following angle: 

(29) 

The corresponding rotation angle for Gear 
1 is: 

(30)

To execute the third maneuver, Gear 1 has 
to revolve by the following angle: 

(31) 
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Finally, the fourth maneuver requires Gear 
1 to be rotated by: 

(32) 

The series of the above-considered four 
maneuvers does not alter the angular position 
of Gear 1; hence the following relationship 
holds: 

(33) 

By taking into account Equations 1, and 27 
through 32, Equation 33 translates into the fol-
lowing condition: 

See this page for equation (34)

Replacement into Equation 34 of the 
expressions for σ1, b1, 1, and b2, 1—provided by 
Equations 22, 24 and 25—leads to: 

See this page for equation (35) 

This is the key condition for determining 
the meshing backlash H of a pair of involute H of a pair of involute H
helical gears mounted on skew axis shafts. 
Through Equation 35, the meshing backlash is 
expressed as a function of the gear geometry 
p, N1, N2N2N , ϕ1, ϕ2; the relative placement of the 
gear axes, determined by a0 and α0, and quan-
tities that are simple and known functions of 
these parameters: v0, λ, Q, θ1,1, θ2,1. See also 
Equations 6, 23, 16, 20 and 21.

As far as the author is aware, this is the 
first time that the meshing backlash of two 
crossed-axis, involute gears is expressed in so 
concise a form. 

Optimal Hob Setting
While a cylindrical involute gear with spur 

or helical teeth is being hobbed, the meshing 
of the gear with the hob can be considered as 
the meshing of two cross- axis, involute helical 
gears with zero backlash. Therefore the equa-
tions drawn in the previous two sections can 
be employed to analyze the kinematics of the 
hobbing process, provided that quantity H is H is H
set to zero. 

The  gea r  be ing  cu t  and  t he  hob—
labeled in the sequel as Gears 1 and 2, and 
in no specific order—have known kinemati-
cally  relevant dimensions. The parameters of 
the relative position of the gear axes—the axis 
distance a0 and the axis angle α0—are subject 

to the ensuing condition (Equation 35): 

(36)

where: 

See this page for equation (37) 

Since Equation 36 is the only condition 
that parameters a0 and α0 have to comply with, 
there exists a simple infinity of possible rela-
tive settings of the hob axis with respect to 
the gear axis. More precisely, any axis setting 
that satisfies Equation 36 cuts out the flank of 
the gear teeth from the same set of involute 
helicoids (here considered as surfaces with 
indefinite extent). Simply, different choices of 
a0 and α0 that comply with Equation 36 select 
different patches from the same set of involute 
helicoids. 

The criterion suggested in this paper for 
choosing the relative position of the axes of 
gear and hob is the minimization of the axis 
distance a0. The rationale of this choice lies 
in the consequent maximization of the radial 
extension of the tooth flanks, for a given hob 
and a prescribed tip diameter of the gear. 

The gear  hob axis distance a0 reaches an 
extreme value when the ensuing condition is 
satisfied as:

(38) 

The minimum possible value of a0, togeth-
er with the corresponding value for α0, derive 
from simultaneously solving Equations 36 
and 38. 

To take advantage of Equation 38, some 
partial derivatives have to be computed. On 
the right- hand side of Equation 37, quantities 

Equation 34.

Equation 35.

Equation 37.
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Q, v0, θ1,1, and θ2,1 are functions of α0. Finding 
the derivatives of Q and v0 with respect to α0

poses no hurdles whatsoever. To determine the 
derivative of θ1,1 with respect to α0, both sides 
of the first of Equations 14 are derived with 
respect to α0. Following elementary algebra-
ic manipulation, the ensuing condition is ob-
tained:

(39)

Insertion of the expression of Equation 
18 for s1,1 yields:

    (40) 

The derivative of θ2,1 with respect to α0 is ob-
tained in a similar way:

    
(41) 

With the aid of Equations 40 and 41, 
Equation 38 can be rewritten as: 

See this page for equation (42) 

In order to simultaneously solve Equations 
36 and 42, the expression of a0 as a function of 
α0 is first linearly obtained from Equation 42: 

See this page for equation (43) 

and then inserted into Equation 36. The result-
ing equation contains α0 as the only unknown: 

See this page for equation (44) 

In Equation 44, quantities u0, v0, Q, θ1,1, a

nd θ2,1 are functions of α0. Their expressions 
in terms of α0 are given by Equations 6, 16, 20 
and 21. 

A further comment pertains to quantity 
λ, which appears in Equation 44, both explic-
itly and implicitly (see Eqs. 20 and 21). Al-
though the value of λ should be obtained by 
Equation 23, for the case of a hob cutting a 
gear, the sum of the base cylinder radii ρ1

and ρ2 is generally smaller than the axis dis-
tance a0, hence the following inequality is sat-
isfied as:

(45) 

Consequently, in this case, λ can be giv-
en the ensuing simplified expression: 

(46)

The hob shaft angle that allows a given 
hob to cut a given gear at the minimum 
axis distance is the value of α0 that satisfies 
Equation 44. Once this value has been numeri-
cally determined, its insertion into Equation 43 
straightforwardly yields the corresponding, or 
minimum, axis distance a0. 

More generally, Equations 44 and 43 can 
be resorted to whenever it is of interest to find 
the relative position of the axes of two cylin-
drical helical gears with involute teeth that 
have to mesh together—with no backlash—at 
the minimum axis distance. 

Numerical Example
The results presented in the previous sec-

tion are here applied to determine the setting 
parameters for the finish- hobbing operation of 
a given helical involute gear. Two cases will be 
considered—cutting by a given right- handed 
hob and cutting by a left-handed hob that is 
the mirror image of the former. The results 
obtained in these two cases will be compared 
to those stemming from the corresponding cus-
tomary choice of the hob shaft angle. 

Let us suppose that the gear to be hob-
 machined is characterized by the number of 
teeth N1 = 17; normal pressure angle ξ

n
 = 20°;

normal module m
n
 = 5 mm; helix angle at the 

standard pitch cylinder β
p1 = 29.5° ; profile 

shift x1= 3 mm. 
The hobs are double-threaded, i.e., N2N2N  = 2. 

They have the same normal pressure angle and 
normal module as the gear. Moreover, their 
addendum is 1.25 times the normal module, 
and the radius of their tip cylinder is R

e2 = 65 

Equation 42.

Equation 43.

Equation 44.
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mm. The cylinder coaxial with each hob that 
intersects the left-hand and right-hand flanks 
of the hob threads at equally spaced helices 
has radius R

p2 = R
e2−1.25m

n
 = 58.75 mm.

As shown hereafter, standard computations 
lead to the normal base pitch (plead to the normal base pitch (plead to the normal base pitch ( ), the angular 
base thickness (ϕ1 and ϕ2) and base helix angle 
(β1 and β2) of gear (1) and hobs (2), via deter-
mination of the transverse module (m1 and m2) 
and the transverse pressure angle (ξ1 and ξ2):

  (47)
                                         

 (48)
   

(49)

See this page for equation (50)

See this page for equation (51)

 (52)

 (53)

 (54)
  

See this page for equation (55)

See this page for equation (56)

The foregoing computations also yield the 
hob helix angle β

p
β

p
β 2 at the standard pitch cylin-

der (β
p

β
p

β 2 is the helix angle measured at distance 
R

p2 from the hob axis; the positive value of β
p

β
p

β 2

refers to the right-threaded hob).
All parameters relevant to the analysis at 

hand (i.e., normal base pitch p, numbers of 
teeth N, angular base thickness ϕ, and base 
helix angle β) are listed in Table 1. The sub-
stantial number of decimal digits used in 
reporting both data and results have the only 
purpose of allowing the reader to accurate-
ly trace the computations here summarily 
described.

By following the procedure explained in 
the previous section, the optimal hob settings 
reported in Table 2 have been obtained. It is 

Table 2—Optimal hob settings.

Left-threaded Hob Right-threaded Hob 

α0 [deg] 55.84099326 −114.86308717 

a0 [mm] 110.57666813 110.57666813 

Table 3—Customary hob settings.

Left-threaded Hob Right-threaded Hob 

α0 [deg] 55.61785767 −114.61785767 

a0 [mm] 110.58061052 110.58061052 

Table 1—Key geometric parameters of gear and hobs. 

Gear Hobs 

π [mm] 14.76065717 14.76065717 

Ν 17 2 

α[deg] 16.06490494 426.38980178 

a [deg] 27.56320246 ±69.43646886 

worth noting that the shaft angle α0 referred 
to in Table 2 has the meaning explained in 
Section 2, which does not always coincide 
with the meaning assigned to this term by 
other authors (for instance, the shaft angle Σ
defined in Reference 3 is the opposite of the 
shaft angle α0 adopted in this paper).

In order to compare the gain attainable 
by the proposed procedure for determining 
the hob setting, the shaft angle α0 has been 
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set at its customary value, i.e. −(β
p

β
p

β 1+β
p

β
p

β 2), and 
the corresponding shaft distance a0 has been 
computed by solving Equation 36 (now a lin-
ear equation in a0). The results are reported in 
Table 3.

A comparison of Tables 2 and 3 reveals 
that the gain obtained by the proposed proce-
dure is marginal to say the least. With refer-
ence to the standard hob setting, the optimum 
hob setting would require a variation of the 
shaft angle by a fourth of a degree, the result 
being a decrease of the shaft axis distance by 
only 0.004 mm.

Similar observations could be made when 
comparing the optimal and standard hob set-
tings for an involute spur gear.

Conclusions
The paper has suggested a criterion for 

selecting the hob setting for cutting spur 
and helical involute gears. Implementing the 
proposed criterion requires a transcendental 
equation in only one unknown to be numeri-
cally solved. 

Although computationally not very 
demanding, the presented procedure is more 
complex than the standard one, and conducive 
to marginally better results. Therefore the 
effectiveness of the standard procedure practi-
cally rests confirmed. 

On the other hand, addressing the consid-
ered hob setting problem has led to devising a 
new formulation of the equations governing the 
meshing of crossed- axis involute gears. These 
equations, more lean and compact than those 
published thus far in the technical literature, 
could find application to other contexts as 
well. 
References
1. Henriot, G. Traité Théorique et Pratique 
des Engranages. Fabrication, Contrôle, Lubri
fication, Traitement Thermique. Dunod, Paris, 
1972. 
2. Townsend, D.P. Dudley’s Gear Handbook. 
McGraw  Hill, New York, 1992. 
3. Colbourne, J.R. The Geometry of Involute 
Gears. Springer  Verlag, New York, 1987. 
4. Chang, S. L., C.B Tsay and S. Nagata. “A 
General Mathematical Model for Gears Cut 
by CNC Hobbing Machines.” ASME Journal 
of Mechanical Design, 119, 1997, pp., 108–
113. 
5. Radzevich, S.P. “About Hob Idle Distance 
in Gear Hobbing Operation,” ASME Journal of 
Mechanical Design, 124, 2002, pp. 772–786.  

50 GEARTECHNOLOGY November/December  2007  www.geartechnology.com www.geartechnology.com     November/December  2007      GEARTECHNOLOGY  52

6. Litvin, F.L., and A. Fuentes. Gear Geometry 
and Applied Theory. Cambridge University Pr
ess, 2004.  
7. Innocenti, C. “Analysis of Meshing of 
Beveloid Gears,” Mechanism and Machine 
Theory, 32, 1997, pp. 363– 373. 

A shorter version of this paper was presented 
at the 2006 ASME International Mechanical 
Engineering Congress and Exposition,
November 5– 10, 2006, Chicago, Illinois, USA.


