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State of the Art
Surrogate models, also known as response surface models or 
metamodels, are approximation models, which are based on 
mathematical functions (Ref.1). In engineering, surrogate mod-
els are used to correlate the input and output variables of experi-
ments and simulations (Refs. 2–10). This is especially true for 
very time-consuming, costly or high number of experiments/
simulations. In this case, the surrogate model can be evaluated 
much faster in comparison to the experiment or complex simu-
lation. This is most important for design space exploration or 
optimization where a high number of experiments of simula-
tions is necessary (Ref. 5). In order to reduce the time effort, the 
extensive simulation is only performed for a reduced number 
of parameter sets. These initial parameter sets are defined by 
means of methods of design of experiment (DOE), e.g., full-
factorial sampling or latin hypercube sampling (Ref. 11). For 
computational problems a latin hypercube sampling or the 
Monte-Carlo approach (random sampling) is often used to 
identify the initial parameter sets. Once the initial parameter 

sets are identified, the simulation is performed at these given 
points. The results of the simulation are used to fit a surrogate 
model to the given input variables in order to approximate the 
system behavior of the engineering system. Possible approxima-
tion types for surrogate models are shown in Figure 1. The most 
common modeling types are models based on radial basis func-
tions (RBF), kriging models, also known as Gaussian process 
models, and models based on multivariate adaptive regression 
splines (MARS).

RBFs are functions whose value only depends on the 
Euclidian distance from the origin (Ref. 12). An approximation 
model consists of a number of different radial basis functions, 
which are weighted accordingly. The weights of each basis func-
tions are tuned in order to improve the quality of the approxi-
mation for the given number of data points. In the example in 
Figure 1 the function f(x) = 1 + sin(x²) was evaluated at six test 
data points and approximated by the usage of an RBF surrogate 
model consisting of Gaussian basis functions, as a type of RBF. 
The approximation follows the trend of the sine function but is 
not able to predict any of the test data points in high accordance.

Kriging or Gaussian process models originate from geosci-
ences and are usually used to predict the location of certain 
commodities like oil or gold for which only a finite number 
of boreholes exists (Ref. 13). The Gaussian process consists of 
two parts, one global and one local part. The global part can be 

Figure 1 � Overview of different surrogate modeling types.
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any type of function (e.g., exponential or polynomial), whereas 
the local part consists of a stochastical process, usually a co-
variance function. For the example of the sine function (Fig. 1), 
the Gaussian process model (quadratic global model) follows 
the trend of the sine function and matches each given test data 
point (Refs. 14–15).

The third type are multivariate adaptive regression splines 
(MARS) (Ref. 16). A MARS model consists of different basis 
splines, e.g., linear function, etc. The fitting process consists of 
two parts, the first part being the forward-phase, where new 
basis splines are added in order to improve the quality of the 
approximation and therefore reduce the residuum; the second 
phase is the backward-phase, where the number of basis splines 
is tried to be reduced. The basis spline with the worst influence 
on the approximation is thus removed. For the example of the 
sine function (Fig. 1), the MARS model (up to degree of 3) is 
able to approximate each given test data point and the trend 
within the boundaries of the test data points with high accor-
dance. Only for the area of extrapolation, higher residuum can 
be seen.

In order to evaluate the quality of a surrogate model, the 
error between prediction and given data point (residuum) is 
calculated. The mean squared error (MSE) is a possible method 
to calculate the residuum and is widely used in literature for 
regression problems (Ref. 5). For regression problems, it is nec-
essary to have separate training and test data points in order to 
evaluate the quality of the prediction for points not being part of 
the training data. The surrogate model is trained on the training 
data set and evaluated at the test data points. The mean squared 
error as a measure of quality of the prediction and the test data 
is calculated. The lower the error, the better the model is. For 
engineering problems, where the usage of surrogate models is 
interesting, it is very hard to come by test data sets, as it takes 

additional time and money to generate these data points. In 
order to still be able to differentiate between training and test 
data sets, the cross-validation method is used (Fig. 2, (Ref. 5).

The given data is partitioned in N small data packets. Each 
packet is used as test data set once whereas the remaining data 
sets are used to train the model. Thus, the surrogate model 
setup is conducted N times. The quality of the surrogate model 
is the average mean squared error of each test data set.

Objective and Approach
The state of the art shows that surrogate models offer a great 
potential in reducing the necessary number of long experi-
ments/simulations and have been applied to various fields of 
engineering problems, most notably to geoscience problems. 
Until now, there has been no application/comparative study of 
different surrogate modeling techniques within the field of gear 
design. Especially for the micro geometry design of gears, a high 
number of parameter sets have to be investigated. This leads to a 
great number of variants, which need to be simulated.

The aim of the report is to investigate the potential of using 
surrogate models within the gear design process. The report 
focuses on the comparison of different surrogate modeling tech-
niques/types and their suitability for the gear design process. In 
addition, the surrogate models are used to optimize the micro 
geometry in respect to the defined design objective.

Figure 2 � Cross-validation as a method to assess the quality of the surrogate model.
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The approach for using surrogate models within the gear 
design process is shown (Fig. 3.).

The process is demonstrated based on a flow chart and starts 
with the definition of the design objective.

There are several gear design objectives (durability, effi-
ciency, NVH, weight, cost), which usually are in conflict with 
each other (Ref. 17). Thus, a weighted objective function is 
used to describe the design objective, which considers differ-
ent objectives. Next, the parameter space is defined. For each 
micro geometry parameter, lower and upper boundaries are set. 
Following, DOE methods (e.g., latin hypercube, random sam-
pling) are used to do a design space exploration for a defined 
number of sets and get initial data points with which to train 

the surrogate model. These data points are then simulated with 
the help of the FE-based tooth contact analysis ZAKO3D (TCA) 
in order to characterize the operational behavior of the gears 
(Ref. 18). Based on the results, the surrogate model is trained 
and tested based on the method of cross-validation. If the 
cross-validation error is low enough, the process is proceeded; 
otherwise, the hyperparameter (parameter for the model gen-
eration) of the surrogate model is tuned in order to reduce the 
cross-validation error further. Next, the decision whether to use 
the surrogate model as a regression formula or for an optimiza-
tion of the objective function is to be taken. If the model should 
be used as a regression formula, the process is at its end and the 
surrogate model gives a good approximation formula which can 

Figure 3 � Overview on how surrogate models can be used for the gear design process.

Figure 4 � Gear data of test gear set and design space.
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be easily evaluated in contrast to the simulation method. If the 
surrogate model should be used for an optimization, it is then 
used to minimize the approximated objective value with optimi-
zation techniques (e.g., gradient-based optimization). The opti-
mal parameter set is recalculated in the simulation (here TCA). 
Next, the error between the surrogate model and the simulation 
is checked for the optimal parameter set. If the error is below a 
certain threshold, the optimization is ended. Otherwise, the sur-
rogate model is retrained adding the optimal parameter set and 
the iterative process starts again.

Definition of Test Gear Set and Design Space
The test gear set which is used for this report is depicted in 
Figure 4. In order to investigate the potential of surrogate models, 
a beveloid gear set from an automobile application is chosen. The 
beveloid gear set has a normal module of mn = 2.5 mm, number 
of teeth of z1/z2 = 31/35, a normal pressure angle of αn = 20° and 
a crossing angle of Σ = 7.2°. The pinion is a beveloid gear with a 
root cone angle of θf1 = 7.6°, while the gear is a helical gear.

The design space for the investigation consists of ten different 
micro geometry parameters. For each, pinion and gear, the lead 
and profile angle modification, the lead and profile crowning 
as well as the twist are modified. The chosen upper and lower 
boundary for each parameter can be seen in Table 1.

The design objective for this report is the tooth root stress 
σF2 acc. to van Mises at the gear for a torque 
of T2 = 100 Nm. The occurring tooth root 
stresses are normalized to a scale of [0,1] in 
order to reduce the effect of the magnitude.

Comparison of Surrogate Modeling Techniques
Surrogate modeling techniques offer a great potential in approx-
imation of complex simulations models. In order to set up a 
surrogate model, a defined initial set of points for the chosen 
design space has to be calculated. Design of experiment meth-
ods help in order to sample the points and have an even spread 
in the design space. Thus, the potential of surrogate models in 
the gear design process is also influenced by the DOE methods 
chosen to define the initial set of points. In order to investi-
gate the influence of DOE methods, four different DOE meth-
ods were chosen. Out of the four methods, three methods are 
based on a latin hypercube while the last method is a random 
sampling within the boundaries of the design space (Refs. 11, 
19). The sampling was done using the Python library PYDOE2 
(Ref. 20). Each of the three latin hypercube methods uses a dif-
ferent criterion for sampling the points. The criterion “center” 
centers the points within the sampling interval. The criterion 
“correlation” minimizes the correlation between each of the 
sampling points. The criterion “maximin” maximizes the mini-
mum distance between each of the sampling points. The four 
methods were used to define samples for N = 300, 600 and 900 
sample points within the abovementioned design space.

The comparison of the four DOE methods was done using a 
kriging model with a constant global polynomial (Fig. 5). The 
methods were compared on the value of the root mean squared 

Table 1 � Boundaries for the design space
Parameter Lower boundary / μm Upper Boundary / μm

Lead angle modification Pinion -60 80
Profile angle modification Pinion -42.5 0

Lead crowning Pinion -50 0
Profile crowning Pinion 0 20

Twist Pinion -30 30
Lead angle modification Gear -80 80

Profile angle modification Gear -20 20
Lead crowning Gear -50 50

Profile crowning Gear 0 20
Twist Gear -30 30

Figure 5 � Comparison of DOE sampling methods.
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error (RMSE) and the coefficient of determination R². Each of 
the two values is the mean of a cross-validation using Nfolds = 10.

The comparison of the four DOE methods shows no defined 
influence of the sampling method on the quality of the approxi-
mation using the kriging model. For each of the methods a 
coefficient of determination R² > 0.94 can be achieved. Thus, 
a sampling using a latin hypercube with the center criterion 
is used onwards because of the highest mean coefficient of 
determination.

The figure also shows the influence of the number of experi-
ments (sampling points). With rising numbers of experiments 
the quality of the approximation is increasing, which is to be 
expected. In order to investigate whether the coefficient of 

determination converges to a certain value with increasing 
number of experiments, a higher number of experiments is 
added.

The surrogate modeling techniques mentioned in the state of 
the art are compared to each other in terms of approximation 
quality (Fig. 6). The RMSE and R² are used as quality criterion 
for the comparison and are the mean values of a cross-validation 
using Nfolds = 10. The kriging model uses a linear polynomial 
as a global function and uses a Gaussian correlation as a local 
function. The model is set up using the SMT Toolbox written 
in Python ((Ref. 1). The RBF model uses no global polynomial 
and is set up using the SMT Toolbox. The MARS model uses 
basic splines up to the degree of three and a maximum number 

Figure 6 � Comparison of different surrogate modeling techniques.

Figure 7  Comparison of setup time for the different surrogate modeling techniques
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of terms of 25. The model is set up using the Python library 
PY-EARTH (Ref. 21).

For each of the three modeling techniques we can see an 
increase in quality with an increasing number of experiments. 
Comparing the three techniques, the kriging model has the best 
overall performance in terms of approximation quality. The 
RMSE is below 0.023 for each of the selected number of experi-
ments and is steadily decreasing to a RMSE = 0.0093 at N = 5,000 
experiments. The RBF and MARS model in contrast show a 
magnitude which is more than double in comparison to the 
kriging model. The difference between the RBF and the MARS 
model is minor, while the MARS model shows a slightly better 
approximation.

The same observation can be made for the coefficient of 
determination. The kriging model shows the best approxi-
mation with R² > 0.95 for each of the samples — even at a low 
number of N = 300 experiments. For N = 5,000 experiments 
R² = 0.993 can be achieved. The coefficient of determination for 
the RBF and the MARS model stays below a R² < 0.9 for each 
sample.

The results of the kriging model show that the marginal 
approximation quality (increase in quality with increase in 
number of experiments) is almost constant after N = 1,500 
experiments. For the given example gear set, a number of 
N = 1,500 experiments should be enough to build a very good 
surrogate model.

Based on the results shown, we can conclude that the kriging 
method is the most suitable surrogate modeling technique for 
the gear design process of the three chosen techniques. Even for 
a low number of experiments, the coefficient of determination 
already shows very good results.

Although the approximation quality is the most important 
factor when it comes to surrogate modeling, the duration for 
setting up the model also plays a role in the design process. 
Therefore, Figure 7 shows the comparison of the setup time for 
the three used models in a logarithmic scale.

The lowest setup time is achieved by the RBF model, which 
is faster by a magnitude of 10 in comparison to the kriging and 
MARS model. For a low number of experiments the kriging 
model is faster than the MARS model. For a high number of 
experiments N > 2,500, the setup time for the kriging model is 
greater than the setup time for the MARS model. The setup time 
for the MARS model is not heavily influenced by the sample of 
experiments in comparison to the other two models.

Although the kriging model shows the highest setup time 
(especially for high number of experiments), the magnitude 
of the time to setup the surrogate model is still below or in the 
range of the simulation time for one sample point. Thus, we can 
conclude that the kriging model offers the highest potential for 
the usage in the gear design process.

Summary and Outlook
The gear design process is relying heavily on the use of sim-
ulation methods for predicting the operational behavior of 
gears. The cross influences of different geometry parameters 
(being macro or micro geometry) and positional parameters 
are oftentimes non-linear. In addition, there usually is a wide 
design space, which needs to be tested/explored to find the 

most suitable parameter setting. Thus, a great number of vari-
ants needs to be simulated in a tooth contact analysis. The high 
number of variants causes a high effort in calculation time and 
resources. In order to reduce the necessary number of experi-
ments and therefore reduce the design time for gears, this paper 
focusses on the potential of using surrogate modeling tech-
niques in the gear design process.

The investigation is conducted for a beveloid sample gear set 
with a design space consisting of ten different micro geometry 
parameters. The design space is explored using four different 
sampling techniques from the design of experiment (DOE). The 
results show that the chosen sampling techniques only have a 
very minor effect on the quality of the approximation. Because 
of the highest mean coefficient of determination, a centered 
latin hypercube was chosen for the further investigation. The 
comparison of the surrogate modeling techniques shows that 
a kriging model offers the highest approximation quality; this 
is even true for a low number of experiments. It can also be 
observed (which was to be expected), that an increasing number 
of experiments leads to an increase in the approximation qual-
ity. For the particular test gear set, a number of N = 1,500 experi-
ments already offers offer a very good approximation.

Future research should focus on the application of the sur-
rogate models in the optimization process. In addition, other 
modeling techniques, like convolutional neural networks or K- 
nearest neighbor approaches, should be investigated. 
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