
Introduction
Regarding some of a worm gearset’s basic prop-
erties — high achievable gear ratio including the 
potential of self-locking — it seems quite worth-
while to use them in applications where the ba-
sic disadvantages — for lower to medium sizes 
primarily wear and a complex efficiency — are 
of minor importance. Worm gears are appro-
priate in applications absent high shaft speeds; 
should there be a need for easy sealing, lubri-
cating the worm gearset with greases of higher 
viscosity (NLGI 2) will become increasingly at-
tractive. Greases, on the other hand, deal with 
two major disadvantages — 1) a rather bad heat 
transfer, and 2) absence of cleaning efficiency. 
Therefore a precise knowledge of load capac-
ity — especially of heat transfer and wear, as 
well as general information on appropriate 
greases — was subject to systematic verification. 
In this context results of worm gearsets with a 
center distance of a = 65 mm are shown to dem-
onstrate the methodology and to indicate prom-
ising approaches for future investigation. An-
other experiment with a cast iron worm wheel 
indicates potential for greater optimization.

State of the Art
Calculating heat transfer in worm gears is based 
on the investigations of Neupert (Ref. 1) at sta-
tionary conditions that were included in the cal-
culation method according to DIN 3996:2012-09 
(Ref. 2). An approach for transient conditions 
was done by the analysis of Hermes (Ref. 3). 
Nevertheless all methods consider oil as a lubri-
cant, resulting in consideration of the lubricant 
being of uniform temperature.

The calculation of wear is also based on the 
analysis of Neupert (Ref. 1) and has been sub-

Load Capacity and Efficiency of 
Grease-Lubricated Worm Gears
Prof. Dr.-Ing. Karsten Stahl, Prof. Dr.-Ing. B.-R. Höhn, 
Dr.-Ing. Michael Otto and Dr.-Ing. Alexander Monz

Varying installation requirements for worm gears, as, for example, when used in modular gear systems, can necessitate grease 
lubrication — especially when adequate sealing for oil lubrication would be too complex. Such worm gears are being increasingly used in 
outside applications such as solar power plants and slew drives. While knowledge about the operating conditions is often appropriate, the 
basic understanding for load capacity and efficiency under grease lubrication is quite poor. Investigations done at FZG and sponsored by 
FVA/AiF are shown here to give an impression of the basic factors of load capacity and efficiency. The results of the investigation indicate 
a satisfying quality of calculations on heat, load capacity and efficiency based on characteristic parameters of the base oil with only slight 
modifications to the methodology known from DIN 3996 or ISO TR 14521.

This paper was first presented at the 2013 VDI International Conference on Gears, Technical University of Munich, Garching, Germany, 
and is reprinted here with VDI permission.

Figure 1 � Electrically braced test rig at FZG.

Table 1 � Basic data for test gears
Worm Worm wheel

Material 16MnCr5 CuSn12Ni2-C-GCB
Number of teeth z 2 41

Flank form I
Module m 2.5 mm

Quality 5 6

Heat treatment 58-62HRC, eht 
0.4mm

Roughness Ra 0.3 - 0.5 µm

Table 2 � Basic data for lubricants

Name
Viscosity 

@40°C 
[mm2/s]

Viscosity 
@100°C 
[mm2/s]

Thickener Percentage of 
thickener NLGI Additive

Polyglycols
PG1 131 21 Li 8 2 AO,EP
PG2 220 46 LiK 12 2 AO,EP

PG2-GÖ 220 46 - - -
Mineral oils

MIN1 220 16 LiK 14 2 AO,EP
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jected to several elaborations by, for example, 
Weisel (Ref. 4), Hermes (Ref. 3), Jacek (Ref. 5) 
and Nass (Ref. 6). The method is based on a spe-
cific wear-intensity-per-sliding-distance, taking 
into account material, type of oil lubrication, 
and type of oil, as well as basic operating con-
ditions. Specific values for grease as a lubricant 
do not as yet exist. The calculation of efficiency 
as indicated (Ref. 2) is drawn from a base coef-
ficient of friction considering the same influenc-
ing factors as for wear. Since all results showed 
the assignability of these methods, correspond-
ing factors for grease lubrication were defined to 
be adaptable, as found in Reference 2).

Test Stand Operations
The tests were carried out with a center dis-
tances of a = 65 mm, but with different greases. 
Figure 1 shows the used, electrically braced, 
test rig. Input/output torque, input speed and 
mass-temperature were measured continuous-
ly, as was the wear rate at given numbers of load 
cycles. The tests were done as load stage tests 
at different speeds. Cylindrical worm gears ac-
cording to Table 1 were used.

Table 2 shows the matrix of the tested greases. 
In total, 21 greases with 12 corresponding base 
oils were tested, with compositions includ-
ing polyglycols, polyalfaolefins, and mineral 
oils. In this paper, basically results of MIN1 and 
PG2 — both sharing the same additive packages 
and thickeners — will be discussed. Additional 
lubricants are grease PG1 and PG2’s base oil. Ad-
ditional information can be found in Reference 7.

Test Results
Heat transfer. It is commonly known that greas-
es do not display the thermal behavior of oils. Oils 
show uniform temperatures at a time being con-
stantly agitated and thus transferring heat from 
the source to the housing by convection. Unlike 
that, NLGI-2 greases are conducting the heat.

Figure 2 shows the heat gradient in axis sec-
tion of the worm, caused by a power loss of 218 
W at 150 rpm at the worm. The mass tempera-
ture of the worm, being 110°C drops at a rate of 
almost 1°/1 mm.

The major factor to mass temperature is the 
power loss of the teeth. With a decreased abil-
ity of grease to transfer the heat to the housing, 
mass temperature under grease lubrication is 
significantly higher than the temperature of 
splash oil lubricated worm gears. By comparing 
temperatures of both oil and grease lubricated 
operational states with the same power loss, 
Figure 3 shows this fact. It can be seen, that the 
temperature of grease lubricated gears is ap-
proximately 10 to 20°C higher.

Figure 2 � Heat gradient inside gearbox at worm section.

Figure 3 � Mass temperature at same power loss for oil and grease lubrication.

Figure 4 � Mass temperature as function of power loss (grease PG2 and oil PG2-GÖ).
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Figure 4 shows the comparison of mass tem-
perature for oil and grease lubrication to a corre-
sponding calculation model. While calculation 
with DIN 3996 (Ref. 2) shows a slight deviation 
from the measurements, a thermal homologous 
model calculating conduction over every ele-
ment of the gearbox shows rather good concur-
rence. Thus an evaluation of mass temperature 
as the relevant temperature to calculate EHL 
film thickness is enabled.

Load Capacity
Figure 5 shows the wear rate in mg per hour as 
a function of output torque and input speed for 
grease MIN1 at stationary operating conditions. 
The results respond to characteristics similar 
to those of oil lubrication but including a rather 
high variance. This variance in wear rate is cor-
responding to a rather high variance in mass 
temperature. It is quite obvious that a real “steady 
state” is not reached as a raise and fall of mass 
temperature still can be found after more than 
twenty hours of running. The level of wear rate is 
quite high especially compared to oil lubrication.

Apparently, input speeds of 150 or 500 rpm 
lead to rather high wear rates. Slower speeds 
such as 10 or 40 rpm on the other hand show 
significantly lower wear. A change of the worm 
wheel material from bronze to cast iron shows 
significant improvements. Due to scuffing, 
higher speeds above 150 rpm weren’t operable. 
Nevertheless, variance is much smaller than at 
higher speeds (Fig. 6).

To enable calculation of wear load capacity, 
the base wear rate J0T is defined by the results. 
This method allows comparison of various lu-
bricants — regardless of geometry and operating 
conditions — and based simply on a specific pa-
rameter representing the film thickness. Figure 
7 shows these results for the greases MIN1, PG1 
and PG2 — all based on Li or LiK-thickener. In 
addition, grease MIN2 is shown using CaK as a 
thickener and showing additional improvement 
of wear characteristics. The greases based on 
mineral oils show significantly better wear per-
formance than calculated with DIN 3996 (Ref. 2) 
for oils.

Efficiency
Figure 8 shows the base coefficient of friction for 
grease PG2, its base oil PG2-GÖ, and the refer-
ence according to DIN 3996 (Ref. 2) as a func-
tion of mean sliding velocity. It was determined 
and duplicated that the grease is showing lower 
values at lower sliding speeds, as demonstrated 
in the reference.

Figure 5 � Wear rate for grease MIN1.

Figure 6 � Wear rate for grease PG2, bronze and cast iron.

Figure 7 � Base intensity of wear — all greases.
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Conclusion
•	 It has been proven that under specific 

operating conditions — especially when using 
low input speeds — greases may show lower 
wear rates than corresponding oils, as well as 
lower base coefficients of friction.

•	 Regarding the broad variety of lubricants 
that were subject to investigation (Ref. 7), 
grease MIN1 (LiK) happens to be a good 
compromise between wear and efficiency 
(Fig. 9)

•	 Taking MIN1 as a starting point, grease MIN2 
(CaK) shows better wear characteristics, but 
higher friction coefficients and a smaller 
band of service temperature.

•	 Focusing on efficiency PG2 (LiK) proves to be 
the better choice, offering even less friction 
than MIN1. 
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Figure 9 � Potential for optimization.

Figure 8 � Base coefficient of friction for grease PG2 and corresponding base oil.
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