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Tooth contact analysis is an integral 
part of the gear design process. With 
the help of these simulation tools, it 
is possible to calculate the excita-
tion caused by a tooth contact (Ref. 
1). Usually, the load-free transmis-
sion error or the total transmission 
error under load is used for this pur-
pose. However, the calculation with 
the tooth contact analysis ZAKO3D 
allows only a quasi-static consid-
eration of the excitation. To better 
evaluate the behavior in the over-
all system, it is therefore necessary 
to perform a dynamics simulation. 
However, the main disadvantage of 
such dynamics simulations is the 
much longer computing time com-
pared to quasi-static tooth contact 
analyses due to the high computa-
tional effort.

In the context of measures such 
as the increase of resource effi-
ciency as well as due to increasing 
demands of the end customers, the 
pressure on gearbox manufacturers 
to produce fewer rejects and at the 
same time to meet higher demands 
on the quality of the gearboxes is 
growing. To ensure that an assem-
bled gearbox meets the acoustic 
requirements, tests are therefore 
carried out on the fully assembled 
units in end-of-line (EoL) tests 
(Ref. 2). If an anomaly is detected, 
the unit must be disassembled and 
overhauled as far as necessary or 
otherwise scrapped. It would be a 

significant advantage if assemblies, 
that are relevant for the acoustic 
behavior, such as the tooth meshes, 
could already be examined for their 
excitation behavior before assem-
bling them.

Theoretically, this would be pos-
sible by simulating the acoustic 
behavior of the gearbox in a dynam-
ics model, as it is currently used in 
the gear design process, using the 
real topographies of the gears to be 
installed. However, the main prob-
lem here is the calculation time of 
these dynamics models, which pre-
vents a calculation parallel to the 
manufacturing process time.

To solve this challenge, a way must 
be found to predict the excitation 
behavior of the system much faster. 
One approach that is to be investi-
gated for this purpose is the usage 
of metamodels, which allow a con-
siderably faster calculation of the 
target variables. It is relevant here 
that a description of the tooth flanks 
is used, that is as exact as possible 
to be able to determine a realistic 
assessment of the excitation behav-
ior that arises from the two wheels in 
the tooth mesh.

Willecke et al. (Ref. 3) have already 
shown that it is possible to use a 
substitute model for the quasistatic 
description of the problem. The 
approach developed there offers the 
potential to be used for dynamic cal-
culations as well.

State of the Art
The work in this publication is 
mainly based on the preliminary 
work of Willecke et al. (Ref. 3). There 
is also an explanation of the struc-
ture and the application of deep 
neural networks (DNN) for the use 
of topographic deviations as input 
values. In the state of the art of this 
publication, generative adversarial 
networks (GAN) are explained.

Extending Datasets 
Through Generative 
Adversarial Networks

GANs are a subfield of Machine 
Learning and belong to the area of 
unsupervised learning. The basic 
idea is the use of two competitive 
DNNs. The two networks are a gen-
erator network and a discriminator 
network, see Figure 1. The generator 
network takes random input values 
and generates data from them. The 
discriminator network takes this 
generated “artificial” data as well 
as a set of “real” data. Based on pat-
terns in the “real” data, the network 
tries to decide whether the “artifi-
cial” data is fake or real data. If the 
discriminator can recognize the 
generator’s “artificial” data as such, 
the generator is informed about this 
and subsequently tries to generate 
more realistic data. If the discrim-
inator is not able to recognize the 
“artificial” data of the generator as 
such, the discriminator is informed 
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about it and improves itself after-
ward. This process continues until 
equilibrium occurs and the dis-
criminator classifies p = 50 percent 
of the generated data as “artificial” 
and p = 50 percent of the generated 
data as “real” (Ref. 4).

Current challenges concerning 
GAN lie in achieving this converged 
state. Depending on the dataset, 
training method, and hyperparame-
ters (see Figure 1), this is not always 
the case (Ref. 5).

GANs are often used in the genera-
tion or post-processing of images. 
Here, for example, based on a set of 
“real” images, new “artificial” images 
can be generated, or new “artificial” 
pixels can be created in an existing 
image, thus resharpening the image 
(Ref. 6).

Objective and Approach
The objective is to determine the 
characteristic values of the differ-
ential acceleration of a deviation-
affected gear pair orders of mag-
nitude faster than is possible with 
a conventional elastic multibody 
simulation model (EMBS) under 
load. Therefore, a DNN is developed 
that approximates the EMKS and 
achieves this time advantage. The 
method to be developed for calcu-
lating the characteristic values of 
the transmission error (TE) with 
this model is shown in Figure 2. It is 
assumed that each of the two gears 
is provided with a deviation. In the 
first step, these two deviation sur-

Figure 1—Structure of a generative adversarial network.

faces (AWF) of gear 1 and gear 2 are 
combined to a sum deviation sur-
face (∑ AWF). Thus, an equivalent 
tooth contact is created in which 
only one gear has deviations, and 
the other gear has an ideal invo-
lute. In the second step, the param-
eter pi is derived from the ∑ AWF. 
These parameters should be able to 
describe the ∑ AWF as accurately as 
possible with as small of a number 
of control points as possible. In the 
third step, the parameter pi is given 
as input to the model, which then 
returns the TE characteristics. 

Corresponding to the individual 
steps of the method for calculating 
the TE characteristic values for two 
gears with deviations, the proce-
dure for achieving this goal can also 
be divided into several sub-steps. In 
the first substep, the ∑ AWF must be 
set up. For this purpose, the already 
developed procedure according to 
Willecke et al. based on the approach 
of Brimmers can be used (Refs. 3, 7).

In a third substep, the actual 
DNN for calculation is developed. 
For this purpose, a training data 
set with n = 3,000 data points is cre-
ated. First, a pool of variants is gen-
erated. These are not combined fully 
factorially but distributed with the 
help of a Latin hypercube experi-
mental design so that fewer variants 
are needed to cover the complete 
variation space. An EMBS calcula-
tion under load is performed with 
each variant of this variant pool. 
The acoustic parameters are then 

calculated for the differential accel-
erations calculated in this way. For 
each calculated variant of the pool, 
not only the parameters pi as input 
of the model are known, but also the 
acoustic parameters as output of the 
model. With the help of the data set 
created in this way, the DNN can be 
trained. A dataset created in ana-
log with n = 480 data points, which 
are explicitly not part of the training 
dataset, is used to validate the cre-
ated network.

Subsequently, it will be investi-
gated how well the trained DNN is 
suited to predict data outside the 
trained range and how sensitive 
the network reacts to a reduction in 
the size of the training dataset. The 
GAN represents one way in which 
the dataset could be extended and 
refined for this purpose. The extent 
to which GANs can be used to selec-
tively increase the size of the data-
set for training is being investigated. 
The goal is to generate additional 
realistic training data.

Development of a Dynamic 
Model Considering the 
Topological Deviations 
in the Simulation of the 

Complete System

In this section, a model is set up with 
which the acoustic excitation of an 
e-drive transmission can be inves-
tigated for various topographical 
deviations. Simpack 2023 from Das-
sault Systems is used as the software 
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for the simulation environment. 
The exact use case is the high-speed 
demonstrator transmission of the 
WZL Gear Research Circle (Ref. 8). In 
the elaboration of this report, how-
ever, not both stages of the trans-
mission are considered, but only 
the fast-rotating first stage. Experi-
mental data on the test bench can be 
obtained for one stage as well as for 
two stages.

Modeling the Tooth Contact
The tooth meshing in the simula-
tion model is modeled by the Force 
Element 225: Gear Pair (Ref. 9). The 
calculation method used is the DIN 
3990 method B / Steiner approach. 
The number of slices in the width 
direction is limited to nSlices = 5 for 
performance reasons (Ref. 9). The 
microgeometry can be specified in 
Simpack on the Gear Pair as a two-
dimensional function of the amount 
of deviation over the tooth width 
and gear diameter. The deviation 
specifies the amount at the corre-
sponding location that is removed 
from the ideal geometry. Negative 
values are not permitted. Therefore, 
no material can be added.

Modeling of Further Gearbox 
Components
In addition to the gearing, the other 
peripheral components of the trans-
mission must also be modeled. These 
include all components that are in 
the power flow. The shafts, bearings, 

and housing as well as the fixation 
of the housing are considered here. 
The modeling of the correspond-
ing components is described below. 
The structure is based on the struc-
ture of a dynamics model for a two-
stage e-drive transmission described 
by Willecke et al. (Ref. 8).

Shaft and Housing
Both the shaft and the housing are 
prepared as modally reduced bod-
ies. To create the modally reduced 
bodies, the geometries are exported 
as STEP files from the CAD model 
and imported into the CAE program 
Abaqus 2021, where they are meshed 
(Ref. 10). For this purpose, the shafts 
are manually partitioned to be able 
to use hexahedron-shaped elements 
in as large a volume as possible. 
These elements allow finer meshing 
with the same number of elements 
compared to tetrahedron-shaped 
elements. Thus, better results can be 
achieved with the same computing 
power. Beam models are not suitable 
for that use case hence they can’t 
model the asymmetric modal behav-
ior caused by keyways. However, due 
to the complexity of the housing, it 
will be meshed with tetrahedron-
shaped elements. To ensure the 
quality of the meshing, a FE conver-
gence study is performed, see Fig-
ure 3, left side.

If the edge length of the ele-
ments is reduced from lk = 5 mm 
to lk = 3 mm, the frequency of the 

first eigenmode changes by only 
Df = 0.38 percent. It is thus assumed 
that with an edge length of lk = 3 
mm the modal behavior can be cal-
culated with sufficient numerical 
stability. A further reduction of the 
edge length leads beyond the capac-
ity of a node (RAM = 196 GB) of the 
used high-performance computer 
due to the resulting too-high num-
ber of elements, which cannot be 
solved any longer with the installed 
RAM. The modally reduced bod-
ies are subsequently imported into 
Simpack and modeled there as lin-
ear flexible bodies. The eigenmodes 
are taken over from the calculation 
in Abaqus. Since all the compo-
nents are still in the manufacturing 
stage, validation of the compo-
nents modes was not yet possible. 
The model can later be updated 
with measuring data. This does not 
influence the following steps.

Bearings
The modeling of the bearings is 
done in Simpack with Force Element 
49: Bearinx Roller Bearing. The force 
element is a user force extension of 
the company Schaeffler for Simpack. 
The bearings themselves are mod-
eled in the Force Element based on 
maps. The maps were created by 
Schaeffler. The maps take the posi-
tions and velocities of the housing 
bore and the shaft as input and cal-
culate the resulting reaction forces 
and torques.

Figure 2—Procedure for the construction of the deep neural network.
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Assembling the Model
The individual components created 
are connected in Simpack by differ-
ent Force Elements and thus assem-
bled to form the overall model. The 
application of the torque is real-
ized in two components. The first 
component applies tension with 
constant torque, which is bal-
anced by the ratio of the transmis-
sion and thus does not lead to any 
acceleration of the drive train. The 
second component is imposed by 
a PI controller on the drive shaft. 
This controller adjusts the drive 
train to the specified speed curve. 
To drive the model efficiently, the 
control parameters of the control-
ler must be set sensibly. To do this, 
the P component is first set to be 
minimally subcritical (Kp = 0.025) 

and then the I component is also 
set (KI = 0.05).

The overall model created in this 
way can now be operated at any 
desired operating point. To obtain an 
overview of the behavior of the gear-
box in the operating range, the gear-
box is clamped at a torque of Min = 50 
Nm and then a pinion speed ramp-up 
from nin = 0 min-1 to nin = 20,000 min-1 
is simulated. The calculated water-
fall diagram of the speed ramp-up is 
shown on the right side of Figure 4. 
The placement of the two rotational 
acceleration measurement systems 
is marked in red on the left side of 
Figure 4. In the calculated waterfall 
diagram three significant areas can 
be seen where the tooth meshing 
frequencies go into resonance with 
natural frequencies of the overall 

system, resulting in increased 
response of the system. The speed 
nin = 10,000 min-1 is selected as the 
operating point for further investi-
gations, which is in the middle of 
the speed range of the gearbox. It is 
easy to see that this rotational 
speed lies in a range of increased 
resonance behavior of the gearbox 
and thus increased response of the 
system is to be expected at this 
operating point.

For further investigations, the 
simulations are now carried out at 
the operating point. Several phases 
are provided for moving the model 
cleanly from standstill to the operat-
ing point and performing measure-
ments there. These are shown in 
Figure 5. In phase I from tmodel = 0 s to 
tmodel = 0.1 s, the load with which the 

Figure 4—Calculated waterfall diagram of the gearbox up to nin = 20,000 min-1.

Figure 3—Mesh convergence study and networked components.
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system is braced is applied to the 
stationary system at a constant load 
change rate of M

.
in = 500 Nm/s. The 

load increases from Min = 0 Nm to 
Min = 50 Nm. The tension torque is 
constant in the further phases.

In phase II from tmodel = 0.1 s to 
tmodel = 0.6 s, the target drive speed 
nin,target, which is the setpoint of 
the PI controller, is increased with 
a constant target speed change rate 
of n

. = 20,000 min-1/s. This results 
in a torque imprint by the control-
ler that accelerates the model from 
rest from nin = 0 min-1 to nin = 10,000 
min-1. In phase III from tmodel = 0.6 s 
to tmodel = 1.0 s, no external variables 
are changed, and the model is given 
time to settle. In the course of the 
speed on the left side of Figure 5, the 
overshooting of the speed, caused by 

Figure 5—Time histories with sectors at the selected operating point.

the discontinuity, in the accelera-
tion specification can be seen well at 
the beginning of phase III. The mod-
el’s behavior is stabilized in phase IV 
from tmodel = 1.0 s to tmodel = 2.0 s. The 
time course of this phase is used 
for the measurement, which is later 
used to calculate the acoustic char-
acteristic values.

The eigenmodes of the flexible bod-
ies were calculated up to a maximum 
eigenfrequency of feig,max = 20 kHz to 
cover the entire human hearing range. 
However, since only the amplitudes of 
the tooth meshing orders are of inter-
est for further evaluation, it is investi-
gated whether modes can be removed 
to save calculation time without 
significantly changing the result. 
Therefore, at the intended operat-
ing point for the EoL, see Figure 6 top 

left, different sampling rates as well 
as maximum considered natural fre-
quencies were investigated.

The right side of Figure 6 shows 
the frequency spectra at the selected 
operating point for four different 
sampling rates. The maximum con-
sidered natural frequency is in each 
case 0.42 times the sampling fre-
quency to comply with the sampling 
theorem according to Shannon (Ref. 
11). The amplitudes of the marked 
tooth meshing orders are shown sep-
arately in the bar chart at the bot-
tom left of Figure 6 for better com-
parability. It can be seen well that 
at a sampling frequency of down 
to fsample = 30 kHz there is no sig-
nificant change in the amplitudes. 
No significant differences can be 
seen here in the entire frequency 

Figure 6—Influence of the considered modes on the system behavior.
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spectrum either. Only at a sam-
pling frequency of fsample = 24 kHz 
significant differences become vis-
ible. In the following, a sampling 
frequency of fsample = 30 kHz and a 
maximum natural frequency of 
feig,max = 12.5 kHz are used. The cal-
culation time can thus be reduced 
from tsim = 21.5 min to tsim = 6 min by 
p = 72 percent.

Development of the 
Surrogate Model to 
Predict the Acoustic 
Characteristic Values

This chapter explains how the neural 
network is built. For this purpose, it 
is first described how the necessary 
data sets, which are later used for the 
generation and validation of the net-
work, are generated. Furthermore, it 
is explained how the hyperparame-
ters for the design of the network are 
selected. Subsequently, the valida-
tion of the prediction of the neural 
network is performed. For this pur-
pose, the ability of the neural net-
work to make predictions about pre-
viously unknown data is evaluated.

Variant Calculation with the 
Dynamic Model to Generate 
the Training and Test Dataset
The creation of the neural network, 
which is used as a surrogate model 
for the prediction of the acous-
tic parameters, requires a training 
data set. In addition, a test dataset 
is needed later for the validation of 

the prediction quality. Both data sets 
consist of different variants of top-
ographic deviations. It should be 
noted that the variants of the test 
dataset are not part of the training 
dataset. The topographies are gener-
ated by free spline surfaces with Nz x 
Ns = 3 x 8 grid points out of analytical 
surfaces (Ref. 3). The procedure, see 
Figure 7 middle frame, is described 
by Willecke et al. (Ref. 3). To obtain 
freeform topographies as realistic as 
possible, they are generated from a 
superposition of standardized modi-
fications (Ref. 3). According to Wil-
lecke et al. (Ref. 3), the range of these 
modifications is shown in Figure 7 
on the left side.

The analytical surface is then con-
verted into a free-form surface. This 
free-form surface is the topography 
that is subsequently used for the tooth 
mesh. To be able to imprint the topog-
raphy on the Gear Pair in Simpack, it 
must be converted beforehand, see 
the section “Modelling the Tooth 
Contact.” The right side of Figure 7 
shows examples of some topographies 
and their processing in Simpack.

The data is transferred to Simpack 
as an “Input Function afs File” (Ref. 
9). In this file the topography is stored 
with a resolution of 20 x 20 interpola-
tion points. The intermediate points 
of the topography are mapped with a 
bivariate spline with two dimensions 
in both directions. A total of nvar = 3000 
variants for the training data set and 
nvar = 480 variants for the test data set 
are generated with a Latin hypercube. 

The boundaries are designed to be 
wider than a possible occurring man-
ufacturing deviation. The variants are 
subsequently simulated in Simpack. A 
variant of the training data set com-
putes on average tsim = 965.16 s and a 
variant of the test data set computes 
on average tsim = 943.67 s. The gen-
eration of the training data set thus 
takes tsim = 2,895,480 s, which corre-
sponds to d = 33.5 days of comput-
ing time, and the generation of the 
test data set requires tsim = 463,277 s, 
which corresponds to d = 5.24 days of 
computing time. However, the calcu-
lations can be performed in parallel, 
so that the real time required can be 
reduced by the factor of the parallel 
calculations if the corresponding IT 
infrastructure is available.

The scatter of the simulation time 
of the individual variants in the 
data sets is shown on the left side 
of Figure 8. All calculations are per-
formed as single-core calculations 
on a workstation (CPU: i7-8700 / 
64GB Ram).

However, npar = 10 variants are cal-
culated simultaneously, since the 
time the user has to wait for the 
results can be reduced efficiently this 
way. After the variant calculation is 
completed, the differential accelera-
tion between tmodel = 1 s and tmodel = 2 s 
in the time domain is calculated for 
each variant. This time signal forms 
the basis for the calculation of the 
acoustic parameters. The character-
istic values are used, whose appli-
cability Willecke et al. could already 

Figure 7—Modification range and application of the modifications in Simpack.
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prove in the quasistatic tooth con-
tact analysis (Refs. 3, 12).

In the following, the amplitudes 
of the first three tooth meshing 
orders are used for the elaboration. 
The distribution of the amplitudes 
of the individual tooth meshing 
orders over the variants is shown 
on the right side of Figure 8. It is 
easy to see that the amplitudes of 
most variants move in a narrower 
band and there are only a few out-
liers in the low amplitude range. 
The position of the mean values 
and quartiles for the training and 
test data set is similarly distrib-
uted, so that it can be assumed 
that the test data set is also rep-
resentative of the area of the net-
work for which the training data 
set provides input values.

Optimal Choice of Hyper-
Parameters for the Neural 
Network
The neural network is character-
ized by various parameters. These 
parameters, which are basically the 
settings of the network, are called 
hyperparameters. To find a starting 
point for the selection of the hyper-
parameters, first the same was cho-
sen, which led to good results in a 
network for the prediction of the 
characteristic values of a quasi-
static tooth contact analysis (Ref. 
3). A square-error function was used 
here since it is suitable for regres-
sion problems (Ref. 13). As learning 
rate l = 0.0001 is used. The network 
thus learns more slowly but achieves 
a higher quality (Ref. 3). The soft-
plus function is used as the activa-

tion function in the hidden layers 
since it has proven to be particu-
larly useful for the problem (Ref. 3). 
The number of hidden layers as well 
as the number of neurons per layer 
will be adjusted for this model. The 
training is done with a group size of 
s = 32 (Ref. 3).

A problem in training neural net-
works can be the overfit of the net-
work to the data of the training data 
set. To investigate the occurrence 
of this effect, the network is trained 
with the training data set for a few 
epochs and then tested to determine 
the quality with which the test data 
set can be predicted. The quality of 
the prediction is defined by the coef-
ficient of determination (R2 value). 
On the left side of Figure 9, the course 
of the R2 value for the prediction of 

Figure 8—Distribution of acoustic parameters in the training and test data set.

Figure 9—Effect of overfitting and influence of neuron number.
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the first tooth meshing order of the 
differential acceleration is shown for 
three network topologies.

It is easy to see that the R2 value 
first increases rapidly and then 
slowly decreases again after it has 
reached a maximum. The position 
of the maximum depends on the 
number of neurons and the num-
ber of hidden layers. The investi-
gations of Willecke et al. on quasi-
statics as well as the evaluation of 
the data set of the dynamics of the 
model investigated here show that 
three hidden layers lead to the best 
prediction quality in principle (Ref. 
3). To investigate how the num-
ber of neurons in the hidden layers 
affects the quality of prediction, it 
is varied for training dataset. The 
results of the variation are shown 
on the right side of Figure 9. It can 
be seen well that a neuron count of 
nz = 1,024 leads to a better R2 value 
than the other network topologies. 
Therefore, in the following, a net-
work topology consisting of three 
hidden layers with nz = 1,024 neu-
rons is used.

Validating the Model with a 
Test Dataset
The DNN is built up and trained 
with the hyperparameters defined 
in the section “Optimal Choice of 
Hyper-Parameters for the Neural 
Network.” The network is used in 
the training state, which has just 
no overfit and lies in the maximum 
of the prediction quality, see Figure 

9 on the left. To check the predic-
tion quality, the data points of the 
test data set are predicted with the 
trained network. Subsequently, the 
predicted acoustic characteristic 
values are compared with the calcu-
lated acoustic characteristic values. 
This is shown in Figure 10 for the 
first, second and third tooth mesh-
ing order of the differential rota-
tional acceleration.

The first row of the diagrams 
shows the prediction of the train-
ing data. It is easy to see that all 
variants lie very well on the line of 
origin in the diagram, i.e., the pre-
dicted values correspond almost 
without deviations from the origi-
nally calculated values. This also 
results in coefficients of determina-
tion R2 ≈ 1. The second row of the 
diagrams shows the prediction of 
the variants of the training data set. 
Again, the points of the individual 
variants for the first two fz are very 
close to the line of origin and the 
R2 values indicate a good mapping 
of the data set. Only the prediction 
of the amplitudes of the third tooth 
meshing order shows larger devia-
tions and thus also only fulfills a 
value of R2 = 0.81. The prediction 
of the entire test data set thereby 
takes tsim = 0.057 s in comparison to 
tsim = 463 277 s in the EMBS model, 
see the section “Optimal Choice 
of Hyperparameters for the Neural 
Network.” Thus, the prediction by 
the network is faster by a factor of 
DDNN = 8 127 666.

Investigating the Influence of 
the Number of Data Points in 
the Training Data Set
The number of data points in the 
training dataset used to create the 
neural network has an impact on 
the prediction quality achieved 
by the network. To investigate 
this influence, the number of data 
points used from the training data 
set to create the DNN is varied. For 
this investigation, a random sam-
ple of data points is taken from 
the entire training data set and 
the DNN is only trained with these 
points. To exclude the possibility of 
an influence due to the specific cho-
sen random points, the process is 
repeated n = 15 times for each data 
set size and the mean value and 
standard deviation of the achieved 
prediction quality are calculated. 
For the network, the same topol-
ogy and the same hyper-parame-
ters are used, which were worked 
out in the section “Optimal Choice 
of Hyper-Parameters for the Neural 
Network.” The results are shown in 
Figure 11.

It is easy to see that with an 
increasing number of training data 
points, the quality of the prediction 
increases rapidly at the beginning 
and increases much more slowly 
with an increasing number of data 
points. However, the effort to gen-
erate the data points increases lin-
early, since for each data point in the 
training dataset an equally effortful 
simulation must be performed.

Figure 10—Prediction of the training and the test data set.
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Investigation of the 
Extrapolation Capability of 
the Neural Network
The behavior of the neural network 
has so far only been tested and eval-
uated in the range for which it has 
been explicitly trained. To investi-
gate how the network behaves out-
side this range, a further test data 
set with n = 1,000 variants is created. 
The deviations of this data set are 
shown in Figure 12 on the left.

They extend beyond the bound-
aries of the training data set so that 
the mesh is forced to extrapolate. 
The right side of Figure 12 shows 
the prediction of the amplitude of 
the first and second tooth meshing 
frequencies of the differential rota-
tional acceleration of the extrapola-
tion test data set. For the first tooth 

meshing order, a principal group-
ing of the values around the origin 
line can still be seen. However, the 
R2 value of R2 = 0.77 indicates that 
the prediction of the extrapolated 
data is of low quality. The predic-
tion of the second tooth meshing 
order shows only a R2 value of R2 = 
0.34. Here it is clearly visible that no 
meaningful prediction can be made 
with the developed approach. The 
DNN can therefore only be used for 
extrapolating predictions to a very 
limited extent.

Extending the Training 
Data Set with the Help of 
a Generative Adversarial 
Network
The section “Investigating the Influ-
ence of the Number of Data Points 

in the Training Data Set” shows that 
a training data set with a too-small 
number of training data points leads 
to a DNN with a worse prediction 
quality. Furthermore, it is shown 
in the section “Investigation of the 
Extrapolation Capability of the Neu-
ral Network” that the DNN also has 
a lower prediction quality for predic-
tions that go beyond the boundar-
ies of the trained domain. The first 
challenge, that a too-low predic-
tion quality is achieved with too few 
training data points, can be met triv-
ially by using more training points. 
The second challenge can be met 
by increasing the size of the train-
ing domain itself. However, this 
decreases the density of data points 
in the trained domain, so the num-
ber of training data points must also 

Figure 11—Influence of the number of training data points on the prediction quality.

Figure 12—Range of variation and prediction quality for the extrapolation test data set.
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be increased. A major disadvantage 
of generating a larger training data-
set is that, classically, more simula-
tions must be performed with the 
EMBS model. This is very computa-
tionally expensive.

An alternative to generating 
more data when an initial data set 
is already available can be a GAN, 
see the “State of the Art” section. 
These networks are typically used 
to create new data that fits the pat-
tern of existing data. The result-
ing augmented dataset can then in 
turn be used as a training dataset for 
the DNN. Classical GANs are usu-
ally designed to process images (Ref. 
6). The data here has the size of the 
number of pixels in the height direc-
tion times the number of pixels in 
the width direction times the num-
ber of color values per pixel.

However, the data in the use case 
to be investigated here is a vector 
with 18 grid points of the topogra-
phy as input and a vector with the 
acoustic characteristic values of the 
corresponding variant as output val-
ues. GANs try to recognize patterns 
in existing data and generate new 
“artificial” data based on these pat-
terns. Therefore, the input variables 
of the grid points and the output 
variables of the characteristic values 
must first be converted into a suit-
able format. For this purpose, the 
input and output vectors are stacked 
on top of each other to a new vector, 
see Figure 1, so that a data set is cre-
ated that no longer consists of pairs 

of input and output quantities, but 
only of a single vector per data point. 
The GAN can now attempt to gener-
ate new “artificial” vectors based on 
the existing vectors as “real” data.

As a test for the applicability 
of a GAN the data set with n = 480 
points is used, see section “Variant 
Calculation with the Dynamic 
Model to Generate the Training and 
Test Dataset.” If the DNN, which is 
used for prediction, is trained with 
only n = 480 points, the quality of 
the prediction is not sufficient, see 
section “Investigating the Influence 
of the Number of Data Points in the 
Training Data Set.” The goal is there-
fore to enlarge the data set consist-
ing of n = 480 points with a GAN in 
such a way that a new DNN can be 
trained with it, which then provides 
improved prediction accuracy. The 
correct choice of hyper-parameters 
has a significant influence on the 
results of the GAN (Ref. 5). These 
hyper-parameters are therefore 
investigated in the following.

To verify whether the GAN pro-
vides meaningful results, the gener-
ated data must be examined. When 
“artificial” images are generated, 
they can be viewed by a human and 
it is obvious to the human whether 
they look realistic or not. This is not 
the case with the generation of “arti-
ficial” vectors. Therefore, the “artifi-
cial” vectors are again decomposed 
into input and output variables and 
then predicted using the DNN from 
the section “Validating the Model 

with a Test Dataset.” Based on the 
validation in the section “Validating 
the Model with a Test Dataset,” it is 
assumed that the DNN correctly rep-
resents the model behavior. Thus, if 
the “artificial” points generated by 
the GAN can be correctly predicted 
by the DNN, it can be assumed in 
principle that the GAN works. The 
quality of this prediction is again 
evaluated with the R2 value. On the 
left side of Figure 13 the influence of 
different numbers of neurons in the 
generator network is shown.

It can be seen well that in the first 
n = 10 000 epochs the R2 value of the 
“artificial” data increases. However, 
discontinuities occur afterward and 
there seems to be no convergence 
of the GAN. In principle, however, 
a neuron number of nNeur,Gen = 20 
seems to provide the most promis-
ing results. For the data set from this 
GAN, which reaches the highest R2 
value (red circle on the left side of 
Figure 13), a comparison between 
the original data set and the “arti-
ficial” GAN data is shown on the 
right side of Figure 13. It is particu-
larly noticeable that only the points 
of the first tooth meshing frequency 
are apparently correct. Furthermore, 
it is noticeable that the value range 
of the GAN data extends beyond the 
value range of the original data. If 
one now considers the fact, that the 
DNN, which is used as the basis for 
calculating the R2 value, has a lower 
quality for extrapolating statements, 
the assessment of the quality of the 

Figure 13—Influence of generator network neurons on data generation with the GAN.
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data generated by the GAN must 
be questioned here. The aspect of 
plausibility is further examined in 
Figure 14. Here, the distributions 
of the deviation values at a point 
in the center of the topography are 
shown in comparison on the left side 
as an example. From the distribu-
tion shapes as histograms, principal 
differences in the data sets can be 
recognized. If the original data set 
also shows deviations greater than 
Dtopo = 0 µm at the point under con-
sideration, the GAN data set instead 
shows values smaller than Dtopo = 42 µm. 
In the boxplot diagram to the right 
of the histograms, this scatter is 
also illustrated.

The right side of Figure 14 shows 
the distribution of the first tooth 
meshing frequency as a result of 
values for both data sets side by 
side. Here it can be seen well that 
although the input variables seem 
to be concentrated in a narrower 
range, the result variables scat-
ter over a wider range. After opti-
mizing the hyper-parameters of 
the generator network, the hyper-
parameters of the discriminator net-
work are optimized. Hereby the R2 

value of the GAN data, related to the 
DNN from the section “Validating 
the Model with a Test Dataset,” can 
be improved again to R2 = 0.995. 
However, many data points still lie 
outside the range of values defined 
by the “real” data. If one removes 
all data points newly generated by 
the GAN, which would represent 

an extrapolation, then the R2 value 
of the remaining generated points 
decreases. The remaining “artificial” 
points are then added to the ini-
tial data set of n = 480 “real” points. 
Thus, a new DNN is generated anal-
ogous to the section “Investigating 
the Influence of the Number of Data 
Points in the Training Data Set.” 
However, the newly generated DNN 
has the same prediction quality as 
the network consisting of the n = 
480 “real” points alone, cf. Figure 10. 
The additional “artificial” data have 
therefore not yet improved the pre-
diction of the DNN. However, the 
“artificial” data also did not worsen 
the prediction of the DNN either, so 
that in principle functionality of the 
GAN can be assumed. To achieve the 
desired added value with the GAN, 
further research is necessary.

Summary and Outlook
Within the scope of this work, an 
EMBS model for the first stage of a 
two-stage gearbox was built in the 
Simpack simulation environment. 
The high-speed demonstrator gear-
box of the WZL Gear Research Cir-
cle was chosen as the application 
case. During modeling, attention 
was paid to a high-performance 
design of the model. Structural 
components are integrated as mod-
ally reduced bodies. To ensure con-
vergence in the modal reduction, 
an FE study was carried out. Fur-
thermore, a simulation study on 
the influence of the maximum con-

sidered eigenmodes in combina-
tion with the maximum necessary 
sampling frequency was carried out 
in the built EMBS model. The set-
tings were optimized in such a way 
that a minimum calculation time 
could be achieved without accept-
ing significant deviations in the 
calculation of the acoustic param-
eters. The microgeometry of the 
gears was imported into the model 
as topography via Input Functions 
of Simpack. To analyze the operat-
ing point for the following simula-
tions, a run-up was calculated and 
evaluated in a waterfall diagram. 
With the simulation model opti-
mized in this way, two variant cal-
culations were carried out at the 
operating point. One with n = 3,000 
variants to generate the training 
data set for the neural network and 
one with n = 480 variants to gen-
erate the test data set. The points 
in both data sets were distributed 
with a Latin Hypercube. Based on 
the preliminary work of Willecke et 
al. the basic structure of the DNN 
was chosen for the construction of 
the network developed in this work 
(Ref. 3). Subsequently, an optimi-
zation of the hyper-parameters 
was carried out for the network 
to achieve an optimal prediction 
quality. A coefficient of determina-
tion of R2 = 0.98 was achieved for 
the test data set. In the prediction 
of the test data set, a speed advan-
tage by a factor of DDNN = 8,127,666 
was achieved. This speed advan-

Figure 14—Comparison of the value ranges of the original and the GAN data set.
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tage makes it possible to pre-
dict the excitation behavior of the 
gearbox based on the topography 
in parallel with the process time 
of manufacturing. The objective is 
therefore fulfilled.

An essential prerequisite for the 
generation of the DNN, which is 
used for the prediction, is a suf-
ficiently large training data set. 
Generating sufficiently large data 
sets can take a significant amount 
of time. To be able to generate a 
sufficiently large training data set 
with fewer data points, the usabil-
ity of GAN was investigated. It 
could be shown that a GAN is in 
principle capable of generating 
data points similar to those con-
tained in the reference data set. 
However, stable convergence could 
not be achieved with the GAN yet. 
Likewise, the generated data could 
not yet improve the prediction net-
work. Further investigations are 
necessary until the GANs can be 
used for the described application. 
For this, further hyper-parame-
ter studies are essential on the 
one hand; on the other hand, the 
learning and evaluation method of 
the GAN can still be optimized so 
that nongradient-based methods 
are used.
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