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Tooth contact analysis is an integral
part of the gear design process. With
the help of these simulation tools, it
is possible to calculate the excita-
tion caused by a tooth contact (Ref.
1). Usually, the load-free transmis-
sion error or the total transmission
error under load is used for this pur-
pose. However, the calculation with
the tooth contact analysis ZAKO3D
allows only a quasi-static consid-
eration of the excitation. To better
evaluate the behavior in the over-
all system, it is therefore necessary
to perform a dynamics simulation.
However, the main disadvantage of
such dynamics simulations is the
much longer computing time com-
pared to quasi-static tooth contact
analyses due to the high computa-
tional effort.

In the context of measures such
as the increase of resource effi-
ciency as well as due to increasing
demands of the end customers, the
pressure on gearbox manufacturers
to produce fewer rejects and at the
same time to meet higher demands
on the quality of the gearboxes is
growing. To ensure that an assem-
bled gearbox meets the acoustic
requirements, tests are therefore
carried out on the fully assembled
units in end-of-line (EoL) tests
(Ref. 2). If an anomaly is detected,
the unit must be disassembled and
overhauled as far as necessary or
otherwise scrapped. It would be a

significant advantage if assemblies,
that are relevant for the acoustic
behavior, such as the tooth meshes,
could already be examined for their
excitation behavior before assem-
bling them.

Theoretically, this would be pos-
sible by simulating the acoustic
behavior of the gearbox in a dynam-
ics model, as it is currently used in
the gear design process, using the
real topographies of the gears to be
installed. However, the main prob-
lem here is the calculation time of
these dynamics models, which pre-
vents a calculation parallel to the
manufacturing process time.

To solve this challenge, a way must
be found to predict the excitation
behavior of the system much faster.
One approach that is to be investi-
gated for this purpose is the usage
of metamodels, which allow a con-
siderably faster calculation of the
target variables. It is relevant here
that a description of the tooth flanks
is used, that is as exact as possible
to be able to determine a realistic
assessment of the excitation behav-
ior that arises from the two wheels in
the tooth mesh.

Willecke et al. (Ref. 3) have already
shown that it is possible to use a
substitute model for the quasistatic
description of the problem. The
approach developed there offers the
potential to be used for dynamic cal-
culations as well.

State of the Art

The work in this publication is
mainly based on the preliminary
work of Willecke et al. (Ref. 3). There
is also an explanation of the struc-
ture and the application of deep
neural networks (DNN) for the use
of topographic deviations as input
values. In the state of the art of this
publication, generative adversarial
networks (GAN) are explained.

Extending Datasets
Through Generative
Adversarial Networks
GANs are a subfield of Machine
Learning and belong to the area of
unsupervised learning. The basic
idea is the use of two competitive
DNNs. The two networks are a gen-
erator network and a discriminator
network, see Figure 1. The generator
network takes random input values
and generates data from them. The
discriminator network takes this
generated “artificial” data as well
as a set of “real” data. Based on pat-
terns in the “real” data, the network
tries to decide whether the “artifi-
cial” data is fake or real data. If the
discriminator can recognize the
generator’s “artificial” data as such,
the generator is informed about this
and subsequently tries to generate
more realistic data. If the discrim-
inator is not able to recognize the
“artificial” data of the generator as
such, the discriminator is informed
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about it and improves itself after-
ward. This process continues until
equilibrium occurs and the dis-
criminator classifies p = 50 percent
of the generated data as “artificial”
and p = 50 percent of the generated
data as “real” (Ref. 4).

Current challenges concerning
GAN lie in achieving this converged
state. Depending on the dataset,
training method, and hyperparame-
ters (see Figure 1), this is not always
the case (Ref. 5).

GANSs are often used in the genera-
tion or post-processing of images.
Here, for example, based on a set of
“real” images, new “artificial” images
can be generated, or new “artificial”
pixels can be created in an existing
image, thus resharpening the image
(Ref. 6).

Objective and Approach

The objective is to determine the
characteristic values of the differ-
ential acceleration of a deviation-
affected gear pair orders of mag-
nitude faster than is possible with
a conventional elastic multibody
simulation model (EMBS) under
load. Therefore, a DNN is developed
that approximates the EMKS and
achieves this time advantage. The
method to be developed for calcu-
lating the characteristic values of
the transmission error (TE) with
this model is shown in Figure 2. It is
assumed that each of the two gears
is provided with a deviation. In the
first step, these two deviation sur-
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faces (AWF) of gear 1 and gear 2 are
combined to a sum deviation sur-
face (3 AWF). Thus, an equivalent
tooth contact is created in which
only one gear has deviations, and
the other gear has an ideal invo-
lute. In the second step, the param-
eter pi is derived from the ) AWF.
These parameters should be able to
describe the Y AWF as accurately as
possible with as small of a number
of control points as possible. In the
third step, the parameter pi is given
as input to the model, which then
returns the TE characteristics.
Corresponding to the individual
steps of the method for calculating
the TE characteristic values for two
gears with deviations, the proce-
dure for achieving this goal can also
be divided into several sub-steps. In
the first substep, the Y, AWF must be
set up. For this purpose, the already
developed procedure according to
Willecke et al. based on the approach
of Brimmers can be used (Refs. 3, 7).
In a third substep, the actual
DNN for calculation is developed.
For this purpose, a training data
set with » = 3,000 data points is cre-
ated. First, a pool of variants is gen-
erated. These are not combined fully
factorially but distributed with the
help of a Latin hypercube experi-
mental design so that fewer variants
are needed to cover the complete
variation space. An EMBS calcula-
tion under load is performed with
each variant of this variant pool.
The acoustic parameters are then
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Figure 1—Structure of a generative adversarial network.

calculated for the differential accel-
erations calculated in this way. For
each calculated variant of the pool,
not only the parameters pi as input
of the model are known, but also the
acoustic parameters as output of the
model. With the help of the data set
created in this way, the DNN can be
trained. A dataset created in ana-
log with n = 480 data points, which
are explicitly not part of the training
dataset, is used to validate the cre-
ated network.

Subsequently, it will be investi-
gated how well the trained DNN is
suited to predict data outside the
trained range and how sensitive
the network reacts to a reduction in
the size of the training dataset. The
GAN represents one way in which
the dataset could be extended and
refined for this purpose. The extent
to which GANs can be used to selec-
tively increase the size of the data-
set for training is being investigated.
The goal is to generate additional
realistic training data.

Development of a Dynamic
Model Considering the
Topological Deviations
in the Simulation of the

Complete System

In this section, a model is set up with
which the acoustic excitation of an
e-drive transmission can be inves-
tigated for various topographical
deviations. Simpack 2023 from Das-
sault Systems is used as the software
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Figure 2—Procedure for the construction of the deep neural network.

for the simulation environment.
The exact use case is the high-speed
demonstrator transmission of the
WZL Gear Research Circle (Ref. 8). In
the elaboration of this report, how-
ever, not both stages of the trans-
mission are considered, but only
the fast-rotating first stage. Experi-
mental data on the test bench can be
obtained for one stage as well as for
two stages.

Modeling the Tooth Contact
The tooth meshing in the simula-
tion model is modeled by the Force
Element 225: Gear Pair (Ref. 9). The
calculation method used is the DIN
3990 method B / Steiner approach.
The number of slices in the width
direction is limited to mg.s = 5 for
performance reasons (Ref. 9). The
microgeometry can be specified in
Simpack on the Gear Pair as a two-
dimensional function of the amount
of deviation over the tooth width
and gear diameter. The deviation
specifies the amount at the corre-
sponding location that is removed
from the ideal geometry. Negative
values are not permitted. Therefore,
no material can be added.

Modeling of Further Gearbox
Components

In addition to the gearing, the other
peripheral components of the trans-
mission must also be modeled. These
include all components that are in
the power flow. The shafts, bearings,

and housing as well as the fixation
of the housing are considered here.
The modeling of the correspond-
ing components is described below.
The structure is based on the struc-
ture of a dynamics model for a two-
stage e-drive transmission described
by Willecke et al. (Ref. 8).

Shaft and Housing
Both the shaft and the housing are
prepared as modally reduced bod-
ies. To create the modally reduced
bodies, the geometries are exported
as STEP files from the CAD model
and imported into the CAE program
Abaqus 2021, where they are meshed
(Ref. 10). For this purpose, the shafts
are manually partitioned to be able
to use hexahedron-shaped elements
in as large a volume as possible.
These elements allow finer meshing
with the same number of elements
compared to tetrahedron-shaped
elements. Thus, better results can be
achieved with the same computing
power. Beam models are not suitable
for that use case hence they can’t
model the asymmetric modal behav-
ior caused by keyways. However, due
to the complexity of the housing, it
will be meshed with tetrahedron-
shaped elements. To ensure the
quality of the meshing, a FE conver-
gence study is performed, see Fig-
ure 3, left side.

If the edge length of the ele-
ments is reduced from [, = 5 mm
to I, = 3 mm, the frequency of the
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first eigenmode changes by only
A4f=0.38 percent. It is thus assumed
that with an edge length of [, = 3
mm the modal behavior can be cal-
culated with sufficient numerical
stability. A further reduction of the
edge length leads beyond the capac-
ity of a node (RAM = 196 GB) of the
used high-performance computer
due to the resulting too-high num-
ber of elements, which cannot be
solved any longer with the installed
RAM. The modally reduced bod-
ies are subsequently imported into
Simpack and modeled there as lin-
ear flexible bodies. The eigenmodes
are taken over from the calculation
in Abaqus. Since all the compo-
nents are still in the manufacturing
stage, validation of the compo-
nents modes was not yet possible.
The model can later be updated
with measuring data. This does not
influence the following steps.

Bearings

The modeling of the bearings is
done in Simpack with Force Element
49: Bearinx Roller Bearing. The force
element is a user force extension of
the company Schaeffler for Simpack.
The bearings themselves are mod-
eled in the Force Element based on
maps. The maps were created by
Schaeffler. The maps take the posi-
tions and velocities of the housing
bore and the shaft as input and cal-
culate the resulting reaction forces
and torques.
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Figure 3—Mesh convergence study and networked components.
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Figure 4—Calculated waterfall diagram of the gearbox up to n;, = 20,000 min’.

Assembling the Model

The individual components created
are connected in Simpack by differ-
ent Force Elements and thus assem-
bled to form the overall model. The
application of the torque is real-
ized in two components. The first
component applies tension with
constant torque, which is bal-
anced by the ratio of the transmis-
sion and thus does not lead to any
acceleration of the drive train. The
second component is imposed by
a PI controller on the drive shaft.
This controller adjusts the drive
train to the specified speed curve.
To drive the model efficiently, the
control parameters of the control-
ler must be set sensibly. To do this,
the P component is first set to be
minimally subcritical (K, = 0.025)

and then the I component is also
set (K;=0.05).

The overall model created in this
way can now be operated at any
desired operating point. To obtain an
overview of the behavior of the gear-
box in the operating range, the gear-
box is clamped at a torque of M;, = 50
Nm and then a pinion speed ramp-up
from n;, = 0 min™! to n;, = 20,000 min!
is simulated. The calculated water-
fall diagram of the speed ramp-up is
shown on the right side of Figure 4.
The placement of the two rotational
acceleration measurement systems
is marked in red on the left side of
Figure 4. In the calculated waterfall
diagram three significant areas can
be seen where the tooth meshing
frequencies go into resonance with
natural frequencies of the overall

system, resulting in increased
response of the system. The speed
nm» = 10,000 min™! is selected as the
operating point for further investi-
gations, which is in the middle of
the speed range of the gearbox. It is
easy to see that this rotational
speed lies in a range of increased
resonance behavior of the gearbox
and thus increased response of the
system is to be expected at this
operating point.

For further investigations, the
simulations are now carried out at
the operating point. Several phases
are provided for moving the model
cleanly from standstill to the operat-
ing point and performing measure-
ments there. These are shown in
Figure 5. In phase I from ;.0 = 0 s to
tmoda = 0.1 s, the load with which the
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Figure 5—Time histories with sectors at the selected operating point.
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Figure 6—Influence of the considered modes on the system behavior.

system is braced is applied to the
stationary system at a constant load
change rate of M;, = 500 Nm/s. The
load increases from M;, = 0 Nm to
M;, = 50 Nm. The tension torque is
constant in the further phases.

In phase II from ¢yma = 0.1 s to
tmoder = 0.6 s, the target drive speed
nm,target, which is the setpoint of
the PI controller, is increased with
a constant target speed change rate
of 7 = 20,000 min’'/s. This results
in a torque imprint by the control-
ler that accelerates the model from
rest from n;, = 0 min™ to n;, = 10,000
min'. In phase III from ¢ = 0.6 S
t0 tmoaa = 1.0 s, no external variables
are changed, and the model is given
time to settle. In the course of the
speed on the left side of Figure 5, the
overshooting of the speed, caused by

the discontinuity, in the accelera-
tion specification can be seen well at
the beginning of phase III. The mod-
el’s behavior is stabilized in phase IV
from ¢, = 1.0 S 1O tyose = 2.0 . The
time course of this phase is used
for the measurement, which is later
used to calculate the acoustic char-
acteristic values.

The eigenmodes of the flexible bod-
ies were calculated up to a maximum
eigenfrequency of f.,n.. = 20 kHz to
cover the entire human hearing range.
However, since only the amplitudes of
the tooth meshing orders are of inter-
est for further evaluation, it is investi-
gated whether modes can be removed
to save calculation time without
significantly changing the result.
Therefore, at the intended operat-
ing point for the EoL, see Figure 6 top
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left, different sampling rates as well
as maximum considered natural fre-
quencies were investigated.

The right side of Figure 6 shows
the frequency spectra at the selected
operating point for four different
sampling rates. The maximum con-
sidered natural frequency is in each
case 0.42 times the sampling fre-
quency to comply with the sampling
theorem according to Shannon (Ref.
11). The amplitudes of the marked
tooth meshing orders are shown sep-
arately in the bar chart at the bot-
tom left of Figure 6 for better com-
parability. It can be seen well that
at a sampling frequency of down
to fumpe = 30 kHz there is no sig-
nificant change in the amplitudes.
No significant differences can be
seen here in the entire frequency
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Figure 7—Modification range and application of the modifications in Simpack.

spectrum either. Only at a sam-
pling frequency of fuu = 24 kHz
significant differences become vis-
ible. In the following, a sampling
frequency of fumy = 30 kHz and a
maximum natural frequency of
feigmaz = 12.5 kHz are used. The cal-
culation time can thus be reduced
from tg,, = 21.5 min to s, = 6 min by
p =172 percent.

Development of the

Surrogate Model to
Predict the Acoustic
Characteristic Values

This chapter explains how the neural
network is built. For this purpose, it
is first described how the necessary
data sets, which are later used for the
generation and validation of the net-
work, are generated. Furthermore, it
is explained how the hyperparame-
ters for the design of the network are
selected. Subsequently, the valida-
tion of the prediction of the neural
network is performed. For this pur-
pose, the ability of the neural net-
work to make predictions about pre-
viously unknown data is evaluated.

Variant Calculation with the

Dynamic Model to Generate

the Training and Test Dataset
The creation of the neural network,
which is used as a surrogate model
for the prediction of the acous-
tic parameters, requires a training
data set. In addition, a test dataset
is needed later for the validation of

the prediction quality. Both data sets
consist of different variants of top-
ographic deviations. It should be
noted that the variants of the test
dataset are not part of the training
dataset. The topographies are gener-
ated by free spline surfaces with N, x
N, =3x8 grid points out of analytical
surfaces (Ref. 3). The procedure, see
Figure 7 middle frame, is described
by Willecke et al. (Ref. 3). To obtain
freeform topographies as realistic as
possible, they are generated from a
superposition of standardized modi-
fications (Ref. 3). According to Wil-
lecke et al. (Ref. 3), the range of these
modifications is shown in Figure 7
on the left side.

The analytical surface is then con-
verted into a free-form surface. This
free-form surface is the topography
that is subsequently used for the tooth
mesh. To be able to imprint the topog-
raphy on the Gear Pair in Simpack, it
must be converted beforehand, see
the section “Modelling the Tooth
Contact.” The right side of Figure 7
shows examples of some topographies
and their processing in Simpack.

The data is transferred to Simpack
as an “Input Function afs File” (Ref.
9). In this file the topography is stored
with a resolution of 20 x 20 interpola-
tion points. The intermediate points
of the topography are mapped with a
bivariate spline with two dimensions
inboth directions. A total of n,,,= 3000
variants for the training data set and
N, = 480 variants for the test data set
are generated with a Latin hypercube.

The boundaries are designed to be
wider than a possible occurring man-
ufacturing deviation. The variants are
subsequently simulated in Simpack. A
variant of the training data set com-
putes on average ., = 965.16 s and a
variant of the test data set computes
on average [y, = 943.67 s. The gen-
eration of the training data set thus
takes ¢y, = 2,895,480 s, which corre-
sponds to d = 33.5 days of comput-
ing time, and the generation of the
test data set requires t, = 463,277 s,
which corresponds to d = 5.24 days of
computing time. However, the calcu-
lations can be performed in parallel,
so that the real time required can be
reduced by the factor of the parallel
calculations if the corresponding IT
infrastructure is available.

The scatter of the simulation time
of the individual variants in the
data sets is shown on the left side
of Figure 8. All calculations are per-
formed as single-core calculations
on a workstation (CPU: i7-8700 /
64GB Ram).

However, n,, = 10 variants are cal-
culated simultaneously, since the
time the user has to wait for the
results can be reduced efficiently this
way. After the variant calculation is
completed, the differential accelera-
tion between ¢, = 1 s and tos =2 S
in the time domain is calculated for
each variant. This time signal forms
the basis for the calculation of the
acoustic parameters. The character-
istic values are used, whose appli-
cability Willecke et al. could already
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Figure 9—Effect of overfitting and influence of neuron number.

prove in the quasistatic tooth con-
tact analysis (Refs. 3, 12).

In the following, the amplitudes
of the first three tooth meshing
orders are used for the elaboration.
The distribution of the amplitudes
of the individual tooth meshing
orders over the variants is shown
on the right side of Figure 8. It is
easy to see that the amplitudes of
most variants move in a narrower
band and there are only a few out-
liers in the low amplitude range.
The position of the mean values
and quartiles for the training and
test data set is similarly distrib-
uted, so that it can be assumed
that the test data set is also rep-
resentative of the area of the net-
work for which the training data
set provides input values.

Optimal Choice of Hyper-
Parameters for the Neural
Network

The neural network is character-
ized by various parameters. These
parameters, which are basically the
settings of the network, are called
hyperparameters. To find a starting
point for the selection of the hyper-
parameters, first the same was cho-
sen, which led to good results in a
network for the prediction of the
characteristic values of a quasi-
static tooth contact analysis (Ref.
3). A square-error function was used
here since it is suitable for regres-
sion problems (Ref. 13). As learning
rate 1 = 0.0001 is used. The network
thus learns more slowly but achieves
a higher quality (Ref. 3). The soft-
plus function is used as the activa-
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tion function in the hidden layers
since it has proven to be particu-
larly useful for the problem (Ref. 3).
The number of hidden layers as well
as the number of neurons per layer
will be adjusted for this model. The
training is done with a group size of
s =132 (Ref. 3).

A problem in training neural net-
works can be the overfit of the net-
work to the data of the training data
set. To investigate the occurrence
of this effect, the network is trained
with the training data set for a few
epochs and then tested to determine
the quality with which the test data
set can be predicted. The quality of
the prediction is defined by the coef-
ficient of determination (R’ value).
On the left side of Figure 9, the course
of the R? value for the prediction of
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1. f, Diff. Acceleration / rad/s? 2. f, Diff. Acceleration / rad/s? 3. f, Diff. Acceleration / rad/s?
T | [
N a— 40000 | £
R LN kS
(1] Q (7]
Z | pd 0
o
2000 | 10000 i
, RZ=1.0 | RZ=0.09 _ R? =097 “:‘
‘Simpack 5000 10000 Simpack 20000 60000 Simpack 2000 4000 £ |
&
o= 40000 | @D = =
= — S
8000 S8 =& 3000 S&X 5
T ° T 2
z z =z 5
2000 10000 1000 %
R2=0.98 R2=0.97 R2 = 0.81 ‘
Simpack 5000 10000 Simpack 20000 60000 Simpack 2000 4000

Figure 10—Prediction of the training and the test data set.

the first tooth meshing order of the
differential acceleration is shown for
three network topologies.

It is easy to see that the R’ value
first increases rapidly and then
slowly decreases again after it has
reached a maximum. The position
of the maximum depends on the
number of neurons and the num-
ber of hidden layers. The investi-
gations of Willecke et al. on quasi-
statics as well as the evaluation of
the data set of the dynamics of the
model investigated here show that
three hidden layers lead to the best
prediction quality in principle (Ref.
3). To investigate how the num-
ber of neurons in the hidden layers
affects the quality of prediction, it
is varied for training dataset. The
results of the variation are shown
on the right side of Figure 9. It can
be seen well that a neuron count of
n. = 1,024 leads to a better R’ value
than the other network topologies.
Therefore, in the following, a net-
work topology consisting of three
hidden layers with n. = 1,024 neu-
rons is used.

Validating the Model with a
Test Dataset

The DNN is built up and trained
with the hyperparameters defined
in the section “Optimal Choice of
Hyper-Parameters for the Neural
Network.” The network is used in
the training state, which has just
no overfit and lies in the maximum
of the prediction quality, see Figure

9 on the left. To check the predic-
tion quality, the data points of the
test data set are predicted with the
trained network. Subsequently, the
predicted acoustic characteristic
values are compared with the calcu-
lated acoustic characteristic values.
This is shown in Figure 10 for the
first, second and third tooth mesh-
ing order of the differential rota-
tional acceleration.

The first row of the diagrams
shows the prediction of the train-
ing data. It is easy to see that all
variants lie very well on the line of
origin in the diagram, i.e., the pre-
dicted values correspond almost
without deviations from the origi-
nally calculated values. This also
results in coefficients of determina-
tion R? = 1. The second row of the
diagrams shows the prediction of
the variants of the training data set.
Again, the points of the individual
variants for the first two fz are very
close to the line of origin and the
R? values indicate a good mapping
of the data set. Only the prediction
of the amplitudes of the third tooth
meshing order shows larger devia-
tions and thus also only fulfills a
value of R’ = 0.81. The prediction
of the entire test data set thereby
takes t., = 0.057 s in comparison to
tyim = 463 277 s in the EMBS model,
see the section “Optimal Choice
of Hyperparameters for the Neural
Network.” Thus, the prediction by
the network is faster by a factor of
ADNN = 8 127 666.

Investigating the Influence of
the Number of Data Points in

the Training Data Set

The number of data points in the
training dataset used to create the
neural network has an impact on
the prediction quality achieved
by the network. To investigate
this influence, the number of data
points used from the training data
set to create the DNN is varied. For
this investigation, a random sam-
ple of data points is taken from
the entire training data set and
the DNN is only trained with these
points. To exclude the possibility of
an influence due to the specific cho-
sen random points, the process is
repeated n = 15 times for each data
set size and the mean value and
standard deviation of the achieved
prediction quality are calculated.
For the network, the same topol-
ogy and the same hyper-parame-
ters are used, which were worked
out in the section “Optimal Choice
of Hyper-Parameters for the Neural
Network.” The results are shown in
Figure 11.

It is easy to see that with an
increasing number of training data
points, the quality of the prediction
increases rapidly at the beginning
and increases much more slowly
with an increasing number of data
points. However, the effort to gen-
erate the data points increases lin-
early, since for each data point in the
training dataset an equally effortful
simulation must be performed.
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Investigation of the
Extrapolation Capability of
the Neural Network

The behavior of the neural network
has so far only been tested and eval-
uated in the range for which it has
been explicitly trained. To investi-
gate how the network behaves out-
side this range, a further test data
set with » = 1,000 variants is created.
The deviations of this data set are
shown in Figure 12 on the left.

They extend beyond the bound-
aries of the training data set so that
the mesh is forced to extrapolate.
The right side of Figure 12 shows
the prediction of the amplitude of
the first and second tooth meshing
frequencies of the differential rota-
tional acceleration of the extrapola-
tion test data set. For the first tooth

meshing order, a principal group-
ing of the values around the origin
line can still be seen. However, the
R? value of R? = 0.77 indicates that
the prediction of the extrapolated
data is of low quality. The predic-
tion of the second tooth meshing
order shows only a R’ value of R? =
0.34. Here it is clearly visible that no
meaningful prediction can be made
with the developed approach. The
DNN can therefore only be used for
extrapolating predictions to a very
limited extent.

Extending the Training

Data Set with the Help of

a Generative Adversarial
Network

The section “Investigating the Influ-
ence of the Number of Data Points
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in the Training Data Set” shows that
a training data set with a too-small
number of training data points leads
to a DNN with a worse prediction
quality. Furthermore, it is shown
in the section “Investigation of the
Extrapolation Capability of the Neu-
ral Network” that the DNN also has
a lower prediction quality for predic-
tions that go beyond the boundar-
ies of the trained domain. The first
challenge, that a too-low predic-
tion quality is achieved with too few
training data points, can be met triv-
ially by using more training points.
The second challenge can be met
by increasing the size of the train-
ing domain itself. However, this
decreases the density of data points
in the trained domain, so the num-
ber of training data points must also
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— Influence of neurons in the generator network — Prediction of the original data vs. the GAN data
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Figure 13—Influence of generator network neurons on data generation with the GAN.

be increased. A major disadvantage
of generating a larger training data-
set is that, classically, more simula-
tions must be performed with the
EMBS model. This is very computa-
tionally expensive.

An alternative to generating
more data when an initial data set
is already available can be a GAN,
see the “State of the Art” section.
These networks are typically used
to create new data that fits the pat-
tern of existing data. The result-
ing augmented dataset can then in
turn be used as a training dataset for
the DNN. Classical GANs are usu-
ally designed to process images (Ref.
6). The data here has the size of the
number of pixels in the height direc-
tion times the number of pixels in
the width direction times the num-
ber of color values per pixel.

However, the data in the use case
to be investigated here is a vector
with 18 grid points of the topogra-
phy as input and a vector with the
acoustic characteristic values of the
corresponding variant as output val-
ues. GANs try to recognize patterns
in existing data and generate new
“artificial” data based on these pat-
terns. Therefore, the input variables
of the grid points and the output
variables of the characteristic values
must first be converted into a suit-
able format. For this purpose, the
input and output vectors are stacked
on top of each other to a new vector,
see Figure 1, so that a data set is cre-
ated that no longer consists of pairs

of input and output quantities, but
only of a single vector per data point.
The GAN can now attempt to gener-
ate new “artificial” vectors based on
the existing vectors as “real” data.

As a test for the applicability
of a GAN the data set with n = 480
points is used, see section “Variant
Calculation with the Dynamic
Model to Generate the Training and
Test Dataset.” If the DNN, which is
used for prediction, is trained with
only n = 480 points, the quality of
the prediction is not sufficient, see
section “Investigating the Influence
of the Number of Data Points in the
Training Data Set.” The goal is there-
fore to enlarge the data set consist-
ing of n = 480 points with a GAN in
such a way that a new DNN can be
trained with it, which then provides
improved prediction accuracy. The
correct choice of hyper-parameters
has a significant influence on the
results of the GAN (Ref. 5). These
hyper-parameters are therefore
investigated in the following.

To verify whether the GAN pro-
vides meaningful results, the gener-
ated data must be examined. When
“artificial” images are generated,
they can be viewed by a human and
it is obvious to the human whether
they look realistic or not. This is not
the case with the generation of “arti-
ficial” vectors. Therefore, the “artifi-
cial” vectors are again decomposed
into input and output variables and
then predicted using the DNN from
the section “Validating the Model

with a Test Dataset.” Based on the
validation in the section “Validating
the Model with a Test Dataset,” it is
assumed that the DNN correctly rep-
resents the model behavior. Thus, if
the “artificial” points generated by
the GAN can be correctly predicted
by the DNN, it can be assumed in
principle that the GAN works. The
quality of this prediction is again
evaluated with the R’ value. On the
left side of Figure 13 the influence of
different numbers of neurons in the
generator network is shown.

It can be seen well that in the first
n =10 000 epochs the R’ value of the
“artificial” data increases. However,
discontinuities occur afterward and
there seems to be no convergence
of the GAN. In principle, however,
a neuron number of nywrce, = 20
seems to provide the most promis-
ing results. For the data set from this
GAN, which reaches the highest R’
value (red circle on the left side of
Figure 13), a comparison between
the original data set and the “arti-
ficial” GAN data is shown on the
right side of Figure 13. It is particu-
larly noticeable that only the points
of the first tooth meshing frequency
are apparently correct. Furthermore,
it is noticeable that the value range
of the GAN data extends beyond the
value range of the original data. If
one now considers the fact, that the
DNN, which is used as the basis for
calculating the R’ value, has a lower
quality for extrapolating statements,
the assessment of the quality of the
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Figure 14—Comparison of the value ranges of the original and the GAN data set.

data generated by the GAN must
be questioned here. The aspect of
plausibility is further examined in
Figure 14. Here, the distributions
of the deviation values at a point
in the center of the topography are
shown in comparison on the left side
as an example. From the distribu-
tion shapes as histograms, principal
differences in the data sets can be
recognized. If the original data set
also shows deviations greater than
4dipo = 0 pm at the point under con-
sideration, the GAN data set instead
shows values smaller than 4,,,, =42 pm.
In the boxplot diagram to the right
of the histograms, this scatter is
also illustrated.

The right side of Figure 14 shows
the distribution of the first tooth
meshing frequency as a result of
values for both data sets side by
side. Here it can be seen well that
although the input variables seem
to be concentrated in a narrower
range, the result variables scat-
ter over a wider range. After opti-
mizing the hyper-parameters of
the generator network, the hyper-
parameters of the discriminator net-
work are optimized. Hereby the R’
value of the GAN data, related to the
DNN from the section “Validating
the Model with a Test Dataset,” can
be improved again to R’ = 0.995.
However, many data points still lie
outside the range of values defined
by the “real” data. If one removes
all data points newly generated by
the GAN, which would represent

an extrapolation, then the R’ value
of the remaining generated points
decreases. The remaining “artificial”
points are then added to the ini-
tial data set of » = 480 “real” points.
Thus, a new DNN is generated anal-
ogous to the section “Investigating
the Influence of the Number of Data
Points in the Training Data Set.”
However, the newly generated DNN
has the same prediction quality as
the network consisting of the n =
480 “real” points alone, cf. Figure 10.
The additional “artificial” data have
therefore not yet improved the pre-
diction of the DNN. However, the
“artificial” data also did not worsen
the prediction of the DNN either, so
that in principle functionality of the
GAN can be assumed. To achieve the
desired added value with the GAN,
further research is necessary.

Summary and Outlook

Within the scope of this work, an
EMBS model for the first stage of a
two-stage gearbox was built in the
Simpack simulation environment.
The high-speed demonstrator gear-
box of the WZL Gear Research Cir-
cle was chosen as the application
case. During modeling, attention
was paid to a high-performance
design of the model. Structural
components are integrated as mod-
ally reduced bodies. To ensure con-
vergence in the modal reduction,
an FE study was carried out. Fur-
thermore, a simulation study on
the influence of the maximum con-
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sidered eigenmodes in combina-
tion with the maximum necessary
sampling frequency was carried out
in the built EMBS model. The set-
tings were optimized in such a way
that a minimum calculation time
could be achieved without accept-
ing significant deviations in the
calculation of the acoustic param-
eters. The microgeometry of the
gears was imported into the model
as topography via Input Functions
of Simpack. To analyze the operat-
ing point for the following simula-
tions, a run-up was calculated and
evaluated in a waterfall diagram.
With the simulation model opti-
mized in this way, two variant cal-
culations were carried out at the
operating point. One with n = 3,000
variants to generate the training
data set for the neural network and
one with n = 480 variants to gen-
erate the test data set. The points
in both data sets were distributed
with a Latin Hypercube. Based on
the preliminary work of Willecke et
al. the basic structure of the DNN
was chosen for the construction of
the network developed in this work
(Ref. 3). Subsequently, an optimi-
zation of the hyper-parameters
was carried out for the network
to achieve an optimal prediction
quality. A coefficient of determina-
tion of R? = 0.98 was achieved for
the test data set. In the prediction
of the test data set, a speed advan-
tage by a factor of dpyy = 8,127,666
was achieved. This speed advan-
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tage makes it possible to pre-
dict the excitation behavior of the
gearbox based on the topography
in parallel with the process time
of manufacturing. The objective is
therefore fulfilled.

An essential prerequisite for the
generation of the DNN, which is
used for the prediction, is a suf-
ficiently large training data set.
Generating sufficiently large data
sets can take a significant amount
of time. To be able to generate a
sufficiently large training data set
with fewer data points, the usabil-
ity of GAN was investigated. It
could be shown that a GAN is in
principle capable of generating
data points similar to those con-
tained in the reference data set.
However, stable convergence could
not be achieved with the GAN yet.
Likewise, the generated data could
not yet improve the prediction net-
work. Further investigations are
necessary until the GANs can be
used for the described application.
For this, further hyper-parame-
ter studies are essential on the
one hand; on the other hand, the
learning and evaluation method of
the GAN can still be optimized so
that nongradient-based methods
are used.
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