
 

  PROPRIETARY 

 

 

 

 

 

 

 

 

 

Aberrant Open-ISM™ 

 

S OF TW A RE  D EV EL OP M ENT L IF E C YC L E  

 

 

 

 

 

 

 

 

Property Description 

Document Version 1.0 

Status DRAFT 

Last Update 2022-03-25 

Document Owner Risk Management 

Next Scheduled Review  



 
Name of Organization  Software Development Lifecycle 

 Page 2 of 23 
  

PROPRIETARY 

Document Approvals 

Approver Name Title Date 

??? ??? ??? 

 

 

Revision History 

Version Date Description of Changes Revised by 

1.0 2022-03-25 DRAFT Aberrant 

  



 
Name of Organization  Software Development Lifecycle 

 Page 3 of 23 
  

PROPRIETARY 

TABLE OF CONTENTS 

1 Overview ............................................................................................................................................... 5 

2 Scope ..................................................................................................................................................... 5 

3 Requirements Gathering ....................................................................................................................... 5 

4 SDLC Workflow ...................................................................................................................................... 6 

4.1 Work flow detail:........................................................................................................................... 6 

4.2 Additional Workflow ..................................................................................................................... 8 

4.2.1 Grooming .............................................................................................................................. 8 

4.2.2 Hot fixes ................................................................................................................................ 9 

4.3 Systems of Record ......................................................................................................................... 9 

4.3.1 Backlog .................................................................................................................................. 9 

4.3.2 Source Code .......................................................................................................................... 9 

4.3.3 CI Pipeline.............................................................................................................................. 9 

4.4 Separation of Environments ......................................................................................................... 9 

4.5 Secure development environment ............................................................................................... 9 

4.6 Information Security in Project Management ............................................................................ 10 

4.6.1 Product backlog security ..................................................................................................... 10 

4.6.2 Product backlog Access ....................................................................................................... 10 

4.7 Secure coding principles ............................................................................................................. 10 

4.7.1 Technical reviews ................................................................................................................ 11 

4.7.2 Code Signing ........................................................................................................................ 11 

4.8 Secure Development ................................................................................................................... 11 

4.9 System Security Testing .............................................................................................................. 11 

4.9.1 Application Penetration Testing ......................................................................................... 12 

4.9.2 Dynamic Application Security Testing (DAST) ..................................................................... 12 

4.9.3 Internal and External Vulnerability Scans ........................................................................... 12 

4.9.4 Static Application Security Testing (SAST) .......................................................................... 12 

4.9.5 Smoke Testing / User Acceptance Testing (UAT) ................................................................ 12 

4.9.6 Regression Testing .............................................................................................................. 12 

4.10 Externally Reported Software Vulnerabilities ............................................................................. 12 



 
Name of Organization  Software Development Lifecycle 

 Page 4 of 23 
  

PROPRIETARY 

5 Outsourcing ......................................................................................................................................... 13 

5.1 Source Code that is Merged ........................................................................................................ 13 

5.2 Applications Maintained by a Third-Party .................................................................................. 13 

6 System Acceptance ............................................................................................................................. 14 

6.1 Deployment Pre-Flight Checklist ................................................................................................. 14 

6.2 Deployment................................................................................................................................. 14 

6.2.1 Deployment Log .................................................................................................................. 14 

6.3 Deployment Post-Flight Checklist ............................................................................................... 14 

7 Software Testing ................................................................................................................................. 15 

7.1 Test Data ..................................................................................................................................... 15 

7.2 Software Testing Lifecycle (STLC) ................................................................................................ 15 

7.2.1 STLC Workflow .................................................................................................................... 15 

8 Threat Modeling.................................................................................................................................. 16 

9 Quality Assurance Plan ....................................................................................................................... 16 

9.1 Defect Tracking ........................................................................................................................... 16 

9.2 Test Automation ......................................................................................................................... 16 

9.3 Application Testing...................................................................................................................... 17 

9.4 Security Testing ........................................................................................................................... 17 

9.4.1 Static Application Security Testing (SAST) .......................................................................... 17 

9.4.2 Dynamic Application Security Testing (DAST) ..................................................................... 17 

9.4.3 Authenticated Application Penetration Testing ................................................................. 17 

9.5 Performance Testing ................................................................................................................... 17 

9.6 Load Testing ................................................................................................................................ 17 

9.7 Production Testing ...................................................................................................................... 18 

9.8 Verification .................................................................................................................................. 18 

9.9 Validation .................................................................................................................................... 18 

10 Contact Information ........................................................................................................................ 19 

11 Document RACI ............................................................................................................................... 19 

12 License Information ........................................................................................................................ 20 

Appendix A:  Glossary of Terms .................................................................................................................. 21 

 



 
Name of Organization  Software Development Lifecycle 

 Page 5 of 23 
  

PROPRIETARY 

1 OVERVIEW 

The Software Development Lifecycle (SDLC) is a framework that describes the activities 
performed at each stage of a software development project.  Likewise, the Software Testing 
Life Cycle (STLC) defines testing as a process that is executed in a systematic and planned 
manner in conjunction with software development.  Given the interrelated nature of both 
lifecycles it seemed practical to address both concepts within the scope of same document. 

2 SCOPE 

Changes the occur in code that are held in a source control repository that is administered by 
<<Company Name>> fall within the scope of this policy. Changes to batch files or scripts not 
held in source control are the purview of change control. 

3 REQUIREMENTS GATHERING 

When an ‘Epic’ is initially scoped functional, non-functional, and security requirements are 
evaluated and included in the relevant work items that are generated and stored in <<Company 
Name>>’s issue tracking system. 

  



 
Name of Organization  Software Development Lifecycle 

 Page 6 of 23 
  

PROPRIETARY 

4 SDLC WORKFLOW 

Figure 1:  SDLC Work Flow 
 

 

4.1 WORK FLOW DETAIL:  

1. Work Item:  A work item represents an item that can be inputted into our Product 
Backlog—<<Company Name>>’s Product Backlog is a web-based ticketing system.  Work 
items are represented as virtual “tickets” and are categorized as either bugs or 
features.  Work items have a title, description, case study, and scope.  For scoping we 
use a Fibonacci based pointing system that is popular with the Agile methodology. 

2. Product Backlog:  A collection of Work Items.  Work Items are periodically “Groomed” to 
ensure that the Backlog is an accurate representation of upcoming development work. 
Recently identified customer issues must be evaluated and triaged during this phase of 
the workflow. 

3. Sprint Planning:  A meeting where items from the Backlog are matched to business 
priorities.  



 
Name of Organization  Software Development Lifecycle 

 Page 7 of 23 
  

PROPRIETARY 

A. Items are accepted or rejected from inclusion in the current sprint based on an 
evaluation from the team. 

B. Items are assigned to available resources.  In the event, resources are not available 
the item is rejected from the current sprint and returned to the backlog. 

1. Sprint:  A collection of work items that results from the Sprint Planning Process—a 
sprint represents two weeks’ worth of work that will be ‘delivered’ at the conclusion of 
the sprint.  Delivered items are demonstrated to the company at large during the ‘show 
me’ meeting prior to sprint planning.  Assigned work items that exist in the context of a 
sprint are represented in the Kanban board as in an ‘Open’ state.  Architectural guidance 
is provided when required to the ticket owner during this phase.  Special consideration 
is given to security, performance and industry canonical standards. 

2. Implementation:  A work item selected for implementation by a developer transitions 
into the ‘In Progress’ state on the Kanban board.  The developer performs development 
tasks with secure coding practices in mind.  The developer branches from the “develop” 
branch and begins work.  During implementation, the developer may annotate or 
modify the ticket representing the work item to assist the product manager or QA. 

A. Items that are completed are committed and pushed to their branch in the source 
control system.  If the ticket is not able to be completed by the developer because of a 
blocking issue or under scoping the ticket is moved to the backlog where is will be re-
evaluated. 

1. Branch Commit:  The branch is submitted to the source control system.  This triggers a 
branch build by the continuous integration (CI) system. 

A. If the branch build compiles without errors and all the tests in the suite of regression 
tests pass the developer will create a pull request.  If for any reason the branch fails CI 
the work item goes back to its implementation state. 

1. Pull Request:  The developer submits a pull request and assigns relevant reviewers for a 
code review.  Reviewers are other members of the development team that participated 
in the sprint.  The status of the work item is changed to “Awaiting Code Review” on the 
Kanban board. 

A. The pull request is reviewed by one or more reviewers.  Reviewers evaluate the pull 
request against existing security standards, scale considerations and industry best 
practices.  Based on the code review the pull request is either passed or failed.  If the 
code review is passed the ticket moves to “Awaiting Test” on the Kanban board.  If the 
work item is failed the pull request is annotated and the work item is moved back to 
implementation to correct the issues. 



 
Name of Organization  Software Development Lifecycle 

 Page 8 of 23 
  

PROPRIETARY 

B. Once the work item is accepted for testing the status of the work item changes to “In 
Test” on the Kanban board.  The work item branch is tested by QA based on the case 
study in the work item ticket.  If the test passes the ticket is merged to the “develop” 
branch.  If the test fails the work item has its status updated to “Failed” on the Kanban 
board.  The work item is then moved back to implementation. 

C. When the branch is merged to “develop” this triggers a build by CI of the “develop” 
branch.  The “develop” build should compile without errors and all of the tests in the 
suite of regression tests should pass.  If for any reason the branch fails CI the offending 
work item goes back to its implementation state and the work item state is changed to 
“Failed” on the Kanban board. 

1. Merge to Develop:  Work items that pass branch testing are collected in the develop 
branch.  At some point near the end of the sprint QA performs smoke testing—and 
security testing if needed. 

A. When QA is satisfied that everything is performing in-line with the work item case 
studies the branch is merged to master—the status of each work item is moved to 
“Resolved” on the Kanban board.  If a particular work item fails it is sent back to 
implementation.  

1. Merge to Master:  Work items are merged to the “master” branch. 

A. When the branch is merged to “master” this triggers a build by CI of the “master” 
branch.  The “master” build should compile without errors and all of the tests in the 
suite of regression tests should pass.  If for any reason the branch fails CI an 
investigation is triggered and conflicts are resolved. 

1. Deploy to Prod:  A change control ticket is submitted with a list of all the tickets included 
in the build.  The production site is smoke tested by QA.  After deployment, the site 
undergoes dynamic scans, internal and external vulnerability scans, and annual 
penetration testing. 

4.2 ADDITIONAL WORKFLOW 

4.2.1 GROOMING 

Grooming occurs outside the work flow.  Prior to step 3. The Product Manager reviews the 
backlog with developers to ensure that the requisite work items have been added to the 
backlog for the next sprint and that the information in the tickets is updated and accurate.  In 
the event the Product Manager identifies work items that are obsolete the team is consulted 
and the work items are switch to a “Closed” state in the ticketing system. 



 
Name of Organization  Software Development Lifecycle 

 Page 9 of 23 
  

PROPRIETARY 

4.2.2 HOT FIXES 

The process works as it does normally until step 7.C.  The pull request is merged directly to 
master and not develop.  Once CI passes on master, master is then merged to develop. 

4.3 SYSTEMS OF RECORD 

4.3.1 BACKLOG 

<<Company Name>> uses <<Name of Issue Tracking System>> as it’s system of record for the 
SDLC backlog. <<Name of Issue Tracking System>> provides visibility into work in progress and 
provides an immutable log of change that fall within the scope of the SDLC. 

4.3.2 SOURCE CODE 

<<Company Name>> uses <<Name of Source Code System>> for source code repository. 
<<Name of Source Code System>> is also used to document code reviews. 

4.3.3 CI PIPELINE 

<<Company Name>> uses <<Name of CI System>> for Continuous Integration. 

4.4 SEPARATION OF ENVIRONMENTS 

<<Company Name>> maintains strict isolation of the supported application environments in-
line with canonical software engineering standards.  <<Company Name>> supports three types 
of environments: 

1. Development environments:  Development environments are machine scoped, contain 
‘LOCAL’ configuration, are branch based, and are hosted on dedicated hardware—e.g. 
the developer’s laptop.  No sensitive customer information is used in the development 
environment. 

2. Virtual Environments:  Virtual environments are programmatically generated on a 
secure cloud based virtual operating system built on a development branch.  They are 
machine scoped and contain configuration used for testing.  Virtual Environments are 
primarily used for testing and demonstrations—they contain no sensitive customer 
data.  Once a virtual environment has been used it is recycled. 

3. Production / DR Environments:  Environments used for ‘PROD’ or ‘DR’ are deployed on 
both virtual and dedicated systems.  Production/DR Environments are domain scoped 
and utilize sensitive customer data.    

4.5 SECURE DEVELOPMENT ENVIRONMENT 



 
Name of Organization  Software Development Lifecycle 

 Page 10 of 23 
  

PROPRIETARY 

Developer environments exist on dedicated machines that are self-contained and machine 
scoped.  Access to the developer’s machine requires authentication against our domain 
controller.  Developer machines utilize full-disk encryption to ensure that development data is 
secure in the even the machine is stolen or misplaced.  All data from PROD can be pulled to 
local and is totally anonymous; development and testing environments redact all sensitive data 
or use de-identified data.  No sensitive customer information is present on development 
machines due to this “scrub.” 
 
The “scrub” job is to be reviewed no less than annually to ensure that customer information is 
being protected sufficiently.  Due to how the data is protected locally on developer 
workstations in addition to the low risk associated with the scrubbed database, there is not a 
duration limit on how long a version of a scrubbed database can remain on a protected system. 

4.6 INFORMATION SECURITY IN PROJECT MANAGEMENT 

Items stored in the Product Backlog contain <<Company Name>> intellectual property (IP).  As a 
result, additional security requirements have been put in place to safeguard <<Company 
Name>> IP. 

4.6.1 PRODUCT BACKLOG SECURITY 

<<Company Name>> uses a 3rd party web application product backlog that is internally hosted 
in our production environment.  The product backlog is only available to users who have access 
to the <<Company Name>> network via our VPN.  Data is encrypted in transport and at 
rest.  Authentication utilizes two-factor authentication. 

4.6.2 PRODUCT BACKLOG ACCESS 

Access to the Product Backlog is controlled by <<Company Name>>’s Access Control Policy.  The 
product backlog uses a role-based access control model (RBAC) to allow authorized users access 
to application features.  Changes to user permissions are submitted via change control. 

4.7 SECURE CODING PRINCIPLES 

<<Company Name>> adheres to OWASP’s Secure Coding Practices Guidelines and all 
developers are required to take secure coding training annually through our internal learning 
management system.  Nightly, static scans of source code are performed against the 
development branch using OWASP’s secure coding principles to ensure that code staged for 
release to our production environment adheres to secure coding principles.  Architects review 
identified vulnerabilities and mitigated items based on their priority. 
  



 
Name of Organization  Software Development Lifecycle 

 Page 11 of 23 
  

PROPRIETARY 

4.7.1 TECHNICAL REVIEWS 

Technical reviews are conducted on all but the most trivial of pull requests.  Software engineers 
have some discretion with this, however, the vast majority of pull requests are code reviewed 
by at least one developer.  A log of all pull requests with their associated technical reviews is 
stored in <<Company Name>>’s source control system.  Logs of pull requests are retained for at 
least one year or more. 

4.7.2 CODE SIGNING 

Restrictions on changes to software packages and artifacts are predicated on job function. Code 
signing should: 

1. Ensure artifacts and code are signed by a trusted certificate authority (CA). 
2. Use technical controls, such as digital signatures and version control, to ensure that only 

authorized artifacts are deployable.  

4.8 SECURE DEVELOPMENT 

Secure coding practices are incorporated into all life cycle stages of the application 
development process. The following minimum set of secure coding practices and architectural 
best practices are implemented when developing and deploying covered applications: 

1. Requirements:  Namely, functional and non-functional application requirements. 
2. Architecture and Design:  This incorporates low-level components such as algorithm 

design and high-level architecture design. 
0. Use only standardized, currently accepted, and extensively reviewed encryption 

algorithms. 
1. Leverage vetted modules or services for application security components, such 

as identity management, encryption, auditing, and logging. 
3. Implementation: perform technical review consistently on pull request. 
4. Code signing: To prevent injection of malware in deployed code. 
5. Testing:  Security testing is performed using both automated and manual methods. 
6. Deployment:  A change control ticket is submitted with a list of tickets included in the 

build. 
7. Maintenance:  Incorporates both enhancements and corrective fixes. 
8. Static scans: To ensure OWASP design principles have not been violated. 

4.9 SYSTEM SECURITY TESTING 

<<Company Name>> does the following system based security related testing. Vulnerabilities 
that require remediation should adhere to Corrective Actions guidance in the Enterprise Risk 
Policy. 



 
Name of Organization  Software Development Lifecycle 

 Page 12 of 23 
  

PROPRIETARY 

4.9.1 APPLICATION PENETRATION TESTING 

The organization should perform both manual authenticated and unauthenticated penetration 
testing at least annually. 

4.9.2 DYNAMIC APPLICATION SECURITY TESTING (DAST) 

After deployment application security tests (DAST) should be performed. 

4.9.3 INTERNAL AND EXTERNAL VULNERABILITY SCANS 

At least quarterly review of internal and external vulnerability scans. 

4.9.4 STATIC APPLICATION SECURITY TESTING (SAST) 

Nightly static application security tests (SAST) of source code and third-party libraries to identify 
security related issues utilizing a SAST platform. Issues identified via SAST should be addressed 
prior to deployment. 

4.9.5 SMOKE TESTING / USER ACCEPTANCE TESTING (UAT) 

Smoke testing / User Acceptance Testing. 

4.9.6 REGRESSION TESTING 

Regression tests via continuous integration. 

4.10 EXTERNALLY REPORTED SOFTWARE VULNERABILITIES  

<<Company Name>> uses a web-based form that allows external users to report software issue 
or vulnerability. The form incorporates a ‘captcha’ that prevents a ‘bot’ from proliferating fake 
issues into the <<Issue Tracking System>>. When the user submits a software issue the form 
invokes an API that creates a ticket in the backlog and provides a ticket number to the user. The 
user is also provided with an email address that allows them to check on the status of their 
ticket. 
 
Recently issues that have been identified by customers must be reviewed and triage during 
backlog grooming as part of the SDLC workflow process. Issues that identify process gaps that 
impact security, or security vulnerabilities may warrant inclusion in the Issue Queue as a 
corrective action. This should be evaluated by the development team during sprint planning.  

  



 
Name of Organization  Software Development Lifecycle 

 Page 13 of 23 
  

PROPRIETARY 

5 OUTSOURCING 

In some instances, it’s necessary to work with software engineers outside the organization. 
When working with an outsourced engineering firm you must follow guidance from the 
“Service Provider Management Policy.”  

5.1 SOURCE CODE THAT IS MERGED 

The SDLC accounts for source code that is developed externally and eventually merged into the 
company’s repository. Source code in this case is subject to all the controls documented in this 
policy. Source code that is merged must also undergo UAT, review from a solution architect, 
and final approval from the product owner prior to being deployed into the production 
environment. 

5.2 APPLICATIONS MAINTAINED BY A THIRD-PARTY 

Applications maintained by a third-party are outside the scope of this document, however, if a 
third-party is hosting software on-behalf of the company it’s incumbent on the company to 
adhere to “Service Provider Management Policy.” Any source code or applications developed 
by third parties owned by the company fall within the purview of the CTO and the CISO 
regardless of where it is hosted. It’s imperative that the CTO is included as a stakeholder in 
identifying non-functional requirements prior to signing any contract with a third-party 
application developer. It’s important to note that third-party applications or services hosted on 
external systems may interoperate with company systems or network infrastructure in ways 
that impact service delivery, or impact the customer experience. 

  



 
Name of Organization  Software Development Lifecycle 

 Page 14 of 23 
  

PROPRIETARY 

6 SYSTEM ACCEPTANCE 

6.1 DEPLOYMENT PRE-FLIGHT CHECKLIST 

The pre-flight checklist is performed after the build is merged to the master branch and ready 
for deployment. The following steps must be performed and attested to by the product owner 
prior to generating a change control request to deploy to production. 

1. SAST has been performed and all issues with a severity rating above medium have been 
addressed and documented in the SAST tool. 

2. All functional related to features or functionality have been tested. In the event UAT 
was required it was performed and is documented. 

6.2 DEPLOYMENT 

Deployment occurs after the pre-flight checklist is completed and the product owner has 
attested that the checklist was completed. 

6.2.1 DEPLOYMENT LOG 

A deployment log is generated and made available to customers via a web-based report that is 
available in the application at the conclusion of every software release. The deployment log 
includes the ticket numbers and the title of the issues from the backlog that were included in 
the release. 

6.3 DEPLOYMENT POST-FLIGHT CHECKLIST 

Post deployment an SRE, or a security analyst, should perform a post-flight checklist to confirm 
that the website is operational and no regressions have been introduced. The post-flight 
checklist includes: 

1. A smoke test 
2. DAST, all issues with a severity rating above medium should be addressed and 

documented in the DAST tool. 

  



 
Name of Organization  Software Development Lifecycle 

 Page 15 of 23 
  

PROPRIETARY 

7 SOFTWARE TESTING 

7.1 TEST DATA 

Testing environments redact all sensitive data or use de-identified data in an environment that 
is segregated from the production environment.  No sensitive customer information is present 
on in the test environment. 

7.2 SOFTWARE TESTING LIFECYCLE (STLC)  

Figure 2:  STLC Work Flow 
 

 

7.2.1 STLC WORKFLOW 

1. Requirements:  Discovery, analysis, and review of functional and non-functional 
requirements as they relate to testing.  Security considerations are also reviewed. 

2. Test Planning:  This generally involves creating a “case study” in the work item’s 
ticket.  This responsibility generally falls to the product owner—this should also 
incorporate security test plans. 

3. Test Designing:  

A. In the case of User Acceptance Testing (UAT) this would involve the creation of 
formalized test cases.  The product owner is responsible for generating UAT test cases 
based on requirements gather from the business owner.  QA and the Product Owner 
coordinate to ensure that test cases conform to business requirements.  UAT test cases 
are stored in an auditable electronic form.  

B. For Smoke Testing we don’t produce test cases—this is for expedience.  The tradeoff 
is formalized documentation at the expense of throughput.  We consider manual 
functional testing as a stop-gap for more formalized automated testing: unit tests, 
integration tests and block tests.  In the case of automated testing the code is the 
documentation.  

1. Test Environment Setup:  Creation of an environment and context that emulates the 
production environment.  



 
Name of Organization  Software Development Lifecycle 

 Page 16 of 23 
  

PROPRIETARY 

A. For branch testing as it relates to the SDLC each branch gets its own environment—
the generation of branch test environments is completely automated and maintained by 
DevOps Engineer. 

B. Environments for UAT may require additional manual modification.  QA works with 
development to ensure that the manual environment is a close proxy of production.  QA 
is responsible for the setup and maintenance of manual testing environments. 

1. Test Execution:  Invocation of tests in a test environment.  The tester is responsible for 
documenting tests results. 

2. Test Reporting:  The result(s) of the test.  Results are stored in our ticketing system 
which we use as our defect tracking system. 

8 THREAT MODELING 

Application architects are encouraged to map out the application, architecture, and 
infrastructure in a structured way to understand its weaknesses. A formal threat modeling 
methodology can be deployed if it’s helpful. The specifics of this process are the purview of the 
CTO.  

9 QUALITY ASSURANCE PLAN 

9.1 DEFECT TRACKING 

Tracking work items in the backlog is primarily the responsibility of the product owner and the 
developers.  When a bug has been added to a sprint the responsibility for tracking the issue falls 
to QA—QA relinquishes responsibility when the work item moves to a “resolved” state on the 
Kanban board. 

9.2 TEST AUTOMATION 

<<Company Name>> invests heavily in test automation primarily because test automation is 
the most effective way to detect regression issues in the codebase.  Developers are responsible 
for designing, creating and maintaining code used for regression tests.  Regression tests are run 
at each and every check-in via continuous integration (CI).  Exception reports from event logs 
are periodically correlated with code coverage reports to ensure that adequate code coverage 
exists for the codebase.   
  



 
Name of Organization  Software Development Lifecycle 

 Page 17 of 23 
  

PROPRIETARY 

9.3 APPLICATION TESTING 

Quality Assurance (QA) is responsible functional and non-functional testing for each work 
item.  Product owners and developers are responsible for creating test cases.  Developers are 
responsible for performing code reviews of prior to check-in. 
 
In some cases, where the ROI justifies the investment of resources, QA will perform User 
Acceptance Testing (UAT).  UAT testing is functional testing with formal test cases.  At the 
conclusion of each test case the business owner is required to sign-off on the test. 

9.4 SECURITY TESTING 

9.4.1 STATIC APPLICATION SECURITY TESTING (SAST) 

SAST is performed nightly on code to ensure that best practices are applied uniformly to 
vulnerable areas of the codebase.  Vulnerabilities when they are discovered are triaged, 
documented, and mitigated.  If an issue warrants a code change it is added to the 
backlog.  Nightly execution of SAST acts as a control to ensure that issues are mitigated in a 
timely manner. 

9.4.2 DYNAMIC APPLICATION SECURITY TESTING (DAST) 

DAST is performed, and reviewed, on a quarterly basis. If an issue is detected it is triaged and 
mitigated or added to the backlog. 

9.4.3 AUTHENTICATED APPLICATION PENETRATION TESTING 

Authenticated Application Penetration Testing is performed by a third party and is done on a 
scheduled basis at least annually. 

9.5 PERFORMANCE TESTING 

Testing of the applications overall performance is periodically performed by members of the 
development team.  Testing may include performance profiling, high-level load testing, or a 
review of web analytics. 

9.6 LOAD TESTING 

Testing is performed to validate system requirements and to ascertain the performance limits 
of the application. 

• On at least an annual basis load testing of the production system should be performed. 



 
Name of Organization  Software Development Lifecycle 

 Page 18 of 23 
  

PROPRIETARY 

• The output of load testing should serve as the foundation for the formal capacity 
management assessment. 

9.7 PRODUCTION TESTING 

The product owner is responsible for coordinating alpha and beta testing. 

9.8 VERIFICATION 

QA is responsible for evaluating and ensuring that the materials used for testing meet the 
specific requirements of the particular phase of the STLC—e.g. that specification are up to date 
and case studies accurately reflect business requirements.  

9.9 VALIDATION 

QA is responsible for evaluating the final product to check whether the software meets the 
business needs defined in the business requirements. 
  



 
Name of Organization  Software Development Lifecycle 

 Page 19 of 23 
  

PROPRIETARY 

10 CONTACT INFORMATION 

Name of Security Program Owner 

Title of Security Program Manager 

Phone Number 

Email 

11 DOCUMENT RACI  

 

Responsible Assigned to do the work Security Program Manager 

Accountable 
Final decision, ultimately 

answerable 
ISM Governance Committee 

Consulted 
Consulted BEFORE an action or 

decision is taken (proactive) 
Executive Management 

Informed 
Informed AFTER a decision or 

action has been taken (reactive) 

Named Participants in this 

document 

Other parties affected by the 

change 

 

  



 
Name of Organization  Software Development Lifecycle 

 Page 20 of 23 
  

PROPRIETARY 

12 LICENSE INFORMATION 

This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 

International Public License (the link can be found at https://creativecommons.org/licenses/by-

nc-nd/4.0/legalcode) 

To further clarify the Creative Commons license related to the Open-ISM™ content, you are 
authorized to copy and redistribute the content as a framework for use by you, within your 
organization and outside of your organization for non-commercial purposes only, provided that 
(i) appropriate credit is given to Aberrant, Inc., and (ii) a link to the license is provided. 
Additionally, if you remix, transform, or build upon the Open-ISM, you may not distribute the 
modified materials. Users of the Open-ISM framework are also required to refer to 
(http://www.aberrant.io/open-ism/license) when referring to the Open-ISM to ensure that 
users are employing the most up-to-date guidance. Commercial use of the Open-ISM is subject 
to the prior approval of Aberrant, Inc. 

  

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
http://www.aberrant.io/open-ism/license


 
Name of Organization  Software Development Lifecycle 

 Page 21 of 23 
  

PROPRIETARY 

APPENDIX A:  GLOSSARY OF TERMS 

Alpha Testing:  Testing with internal users or development partners. 
 
Application Penetration Testing:  A simulated attack against the application executed by a 
third party.  <<Company Name>> performs Application Penetration Tests at least annually. 
 
Beta Testing:  Testing directly with customers.  Users may be selected using stochastic 
methods that limit the audience to a statistically meaningful number. 
 
Block Testing:  Integration tests that incorporates the ability to dynamically inject test 
data.  Block tests are idempotent. 
 
Business Owner:  An individual who defines functional requirements. 
 
Code Coverage:  The percentage of test automation coverage for each assembly or module in 
the codebase. 
 
Code Reviews:  Developers review code for every pull request.  In the event an issue is 
identified the person checking in is required to correct the issue and submit a new pull request. 
 
Continuous Integration (CI):  Triggered when a check-in occurs on a branch.  CI ensures that 
the code compiles and that all regression tests pass prior to a branch being merged. 
 
Defect Tracking:  Relates to the detection and accounting of defects in the production 
system.  Defect tracking can be accomplished in different ways: 
 

• Forensic analysis of logs provides insight into the location, quantity and severity of 
exceptions thrown by the system.  

• The rate of bugs reported to the ticketing system within any given increment of time. 
 
Developer:  A person who implements application features or fixes bugs.  Developers also 
create and maintain test automation. 
 
DevOps Engineer:  The person (or persons) who maintain continuous integration. 
 
Dynamic Application Security Testing (DAST):  Black box security testing that tests the 
application from outside the firewall and performs attacks against the system like what an 
actual attacker would do.  DAST is run at least quarterly.  <<Company Name>> uses <<Name of 
DAST system>> for DAST. 
 
Epic:  An organization group of Work Items in the Product Backlog. 



 
Name of Organization  Software Development Lifecycle 

 Page 22 of 23 
  

PROPRIETARY 

 
Functional Testing:  Testing business cases and permutations.  
Integration Tests:  A code based test that tests interdependencies.  Integration test are 
idempotent.  
 
Load Testing:  Simulating production traffic to ascertain the performance limits of an 
application. 
 
Non-Function Testing:  A requirement that must be present for the application to be 
considered functional.  Non-functional testing incorporates performance, load and scalability 
testing. 
 
Performance Profiling:  Performing a trace of the application at runtime to evaluate 
application performance. 
 
Product Backlog:  A repository of work items. 
 
Product Manager: The individual who defines non-functional requirements. 
 
Quality Assurance (QA):  The person who ensures that the product meets functional and non-
functional specifications. 
 
Regression Testing:  Incorporates automated testing from previous versions of the codebase: 
e.g. unit testing, integration testing and block testing.  Regression tests ensure that the 
codebase continuous to respect functional rules after a bug is fixed or a feature is added. 
 
Security Requirements:  <<Company Name>> generates security requirements using the 
OWASP Top 10. 
 
Smoke Testing:  A combination of functional and non-functional testing.  
 
Source-Code Tracking:  The ability to view a history of all changes to a file and to associate 
those changes to a specific user. 
 
Static Application Security Testing (SAST):  SAST is used to validate that the ‘develop’ branch 
of the codebase is compliant with the latest OWASP application security guidelines.  SAST is run 
nightly. 
 
Tester:  A person who plans and executes the tests. 
 
Unit Testing:  A code based test that tests a unit of work.  A unit test has no dependencies that 
aren’t mocked. 



 
Name of Organization  Software Development Lifecycle 

 Page 23 of 23 
  

PROPRIETARY 

 
User Acceptance Testing (UAT):  Functional testing with test cases.  At the conclusion of the 
test the business owner signs-off that the test succeeded. 
 
Web Analytics:  A platform that tracks application performance and quantifies web traffic 
based on use.  Web analytics utilize meta data from traffic to provide insight into users. 
 
Work Items:  A digital document, or collection of digital documents, that describes an 
application feature or bug.  Work Items are organized into Epics. 

 


