

a) Write the area of the circle as a function of the radius r.

$$
A(r)=\pi \times r^{\wedge} 2
$$

b) Write the radius of the circle as a function of time t.

$$
r(t)=12-(0,3 t)
$$

C) What is the radius of the circle after 4 minutes? What is
the radius of the circle after 3.5 minutes?

$$
\begin{aligned}
r(t)= & 12-(0.3 \times 4) r(t)= \\
& 12-(0.3 \times 3.5) \\
& =10.8
\end{aligned}=10.95
$$

D) determine the area of the circle after 4 minutes and 3.5 minutes.
$A(r)=\pi \times 10.8^{\wedge} 2$
$=116.64 \pi$

$$
\begin{aligned}
A(r) & =\pi \times 10.95 \wedge 2 \\
& =119.90 \pi
\end{aligned}
$$

e) Determine a function that represents area as a function of time t.

$$
A(r(t))=\pi x(12-(0.3 x t))^{\wedge} 2
$$

$A(r(t))=\pi x\left(0.09 x^{\wedge} 2-7.2 x+144\right)$

G) Compute the average rate of change of the area of the circle from 4 minutes to 3.5 minutes.

$\frac{116.64 \pi-119.9 \pi}{4}=-6.52 \pi$ 4-3.5

H) Which values are possible in this problem?
$0<x<12$

