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What Matters in a Reinforcement Learning Task? Learning Task-Relevant Representations with Separated Models Experiments
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Figure 1. A robotic manipulation task explanation for task-relevant parts in the environment. ; ‘e e Q-value Consistency Loss '
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In contrast, humans can accurately figure out what matters visually when transferring to a new e e s S — . =
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Figure 3. Architecture of SMG. One-way arrows represent different types of data flows with the same input. Two-way -

left, only the arm’s orientation and the target position should be focused on this task. We aim arrows represent different types of loss |
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Figure 2. A robotic manipulation task explanation for task-relevant parts in the environment. Laction = I(az, ZHl‘Zt ) < Ep(&tyzﬁrl,zf)[log q(at‘ZHl’ “t ) (3)
- SMG demonstrates superior stability in robotic manipulation tasks.
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