
How to Fine-tune the Model: Unified Model Shift and Model Bias Policy Optimization
Hai Zhang Hang Yu Junqiao Zhao* Di Zhang Chang Huang Hongtu Zhou Xiao Zhang Chen Ye

Department of Computer Science, Tongji University, Shanghai, China MOE Key Lab of Embedded System and Service Computing, Tongji University, Shanghai, China

Introduction

Core Problem: How to adaptively adjust the impacts ofmodel shift
to get a better performance improvement guarantee ?

MBPO[1]-style: Return Discrepancy Scheme

V π|M ≥ V π
M − C(εm, επ) (1)

1. Does not consider the impacts of model shift.

CMLO[2]-style: Performance Difference Bound Scheme

V π2|M2 − V π1|M1

≥ κ(Es,a∼dπ1DTV (P ||PM1) − Es,a∼dπ2DTV (P ||PM2)) − γ

1 − γ
L(2σM1,M2) − εopt

s.t.DTV (PM2||PM1) ≤ σM1,M2, ∀(s, a) ∈ S × A

(2)

1. The lower threshold impairs the subsequent optimization process.

2. The bigger threshold collapses the performance improvement guarantee.

3. Fixed threshold lacks flexibility.

An illustrative experiment

To valid our statement, we devise an experiment that sets three different thresholds

for CMLO on Walker2d environment in MuJoCo.

0K 50K 100K 150K 200K 250K 300K
steps

0

2000

4000

av
er

ag
e

re
tu

rn

Walker2d-v2

Algorithm
5.0
3.0 (CMLO)
1.0

Figure 1. CMLO performance curves for different threshold settings over different random seeds, where 3.0 is the

threshold recommended in the paper.

As Figure 1 shows, the performance corresponding to the other two thresholds

(1.0 and 5.0) is severely affected. Therefore, setting a fixed threshold to constrain

is inappropriate, and a smarter way like USB-PO should be applied to adaptively

adjust the impacts of model shift.
[1] Michael Janner et al. “When to trust your model: Model-based policy optimization”. In: Advances in neural information processing systems 32 (2019).

[2] Tianying Ji et al. “When to Update Your Model: Constrained Model-based Reinforcement Learning”. In: Advances in Neural Information Processing Systems. Ed. by Alice H. Oh et al.2022.

Unified Model Shift and Model Bias Policy Optimization (USB-PO)

Theoretical Proof

Unified Model Shift and Model Bias Bound

V π2|M2 − V π1|M1

≥ κ(γ(E(s,a)∼d
π1
M1

[DTV (pM1||pM∗) − DTV (pM1||pM2) − DTV (pM2||pM∗)] + ∆) − επ) (3)

|∆| Upper Bound

|∆| ≤ 2γ

1 − γ
E(s,a)∼d

π1
M1

[DTV (pM1||pM2) max
s,a

DTV (pM2||pM∗)] + 2επ

1 − γ
max
s,a

DTV (pM2||pM∗) (4)

Practical Implementation

Integral Probability Metrics

sup
f∈F

|Es′∼pM
[f (s′)] − Es′∼pM ′[f (s′)]| = Rmax

1 − γ
DTV (pM ||pM ′) = LvW1(pM , pM ′) (5)

Wasserstein Distance Inequality

W1(pM , pM ′) ≤ W2(pM , pM ′), ∀M, M ′ ∈ M (6)

�∗

�2

�1

model shift

model bias

optimized model shift

optimized model bias

phase2 fine-tuning steps

phase1 MLE process

phase2 fine-tuning (pullback)

fine-tuned �2

Figure 2. A schematic diagram to describe USB-PO. USB-PO adopts a two-phase model learning process. The model

backed up before MLE update (phase 1) is denoted as M1. M denotes the real environment and M2 denotes the
model after phase 1. M2 will be further fine-tuned by Eq.(3) (phase 2) to get a performance improvement guarantee.

Experiments

Higher sample efficiency and asymptotic performance.

HalfCheetah-v2 Walker2d-v2 Humanoid-v2

Ant-v2 InvertedPendulum-v2 Hopper-v2

USB-PO(ours) ALM CMLO SAC PPO PDML MBPO convergence

Automatically fine-tune the model updates.

Model overfitting avoidance.

HalfCheetah-v2 Walker2d-v2 Humanoid-v2

Ant-v2 InvertedPendulum-v2 Hopper-v2

difference of model bias difference of model shift difference of optimization objective value

Prevent diminishing sample efficiency and performance improvement.

HalfCheetah-v2 Walker2d-v2 Humanoid-v2

Ant-v2 InvertedPendulum-v2 Hopper-v2

with none with model shift with model bias with both

code: https://github.com/betray12138/Unified-Model-Shift-and-Model-Bias-Policy-Optimization NeurIPS Conference 2023, New Orleans corresponding: zhaojunqiao@tongji.edu.cn

https://github.com/betray12138/Unified-Model-Shift-and-Model-Bias-Policy-Optimization
zhaojunqiao@tongji.edu.cn

